Skip to main content
Log in

On sparse matrix orderings in interior point methods

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

The major computational task of most interior point implementations is solving systems of equations with symmetric coefficient matrix by direct factorization methods, therefore, the performance of Cholesky-like factorizations is a critical issue. In the case of sparse and large problems the efficiency of the factorizations is closely related to the exploitation of the nonzero structure of the problem. A number of techniques were developed for fill-reducing sparse matrix orderings which make Cholesky factorizations more efficient by reducing the necessary floating point computations. We present a variant of the nested dissection algorithm incorporating special techniques that are beneficial for graph partitioning problems arising in the ordering step of interior point implementations. We illustrate the behavior of our algorithm and provide numerical results and comparisons with other sparse matrix ordering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen ED, Gondzio J, Mészáros C, Xu X (1996) Implementation of interior point methods for large scale linear programs. In: Terlaky T (ed) Interior point methods of mathematical programming. Kluwer Academic, Norwel, pp 189–252

    Chapter  Google Scholar 

  • Ashcraft C, Liu JWH (1997) Using domain decomposition to find graph bisectors. BIT Numer Math 37(3):506–534

    Article  MathSciNet  MATH  Google Scholar 

  • Ashcraft C, Liu JWH (1998a) Applications of the Dulmage–Mendelsohn decomposition and network ow to graph bisection improvement. SIAM J Matrix Anal Appl 19:325–354

    Article  MathSciNet  MATH  Google Scholar 

  • Ashcraft C, Liu JWH (1998b) Robust ordering of sparse matrices using multisection. SIAM J Matrix Anal Appl 19(3):816–832

    Article  MathSciNet  MATH  Google Scholar 

  • Booth KS, Lipton RJ (1981) Computing extremal and approximate distances in graphs having unit cost edges. Acta Inform 15(4):319–328

    MathSciNet  MATH  Google Scholar 

  • Duff IS, Erisman AM, Reid JK (1986) Direct methods for sparse matrices. Oxford University Press, New York

    MATH  Google Scholar 

  • Fiduccia C, Mattheyses R (1982) A linear-time heuristic for improving network partition. Technical report, ACM IEEE 19th design and automation conference proceedings

  • George JA (1973) Nested dissection of a regular finite element mesh. SIAM J Numer Anal 10:345–363

    Article  MathSciNet  MATH  Google Scholar 

  • George A, Liu JWH (1981) Computer solution of large sparse positive definite systems. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • George A, Liu JWH (1989) The evolution of the minimum degree ordering algorithm. SIAM Rev 31:1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta A (1996) Watson graph partitioning package. Technical report RC 20453, IBM T. J. Watson Research Center

  • Hendrickson B, Leland R (1995) The Chaco user’s guide, version 2.0. Technical report, Sandia National Laboratories

  • Hendrickson B, Rothberg E (1998) Improving the run time and quality of nested dissection ordering. SIAM J Sci Comput 20(2):468–489

    Article  MathSciNet  Google Scholar 

  • Karypis G, Kumar V (1995) Analysis of multilevel graph partitioning. Technical report, Supercomputing ’95, proceedings of the 1995 ACM/IEEE conference on supercomputing

  • Karypis G, Kumar V (1998) Metis a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices version 3.0. Technical report, University of Minnesota

  • Karypis G, Kumar V (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392

    Article  MathSciNet  MATH  Google Scholar 

  • Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Technical report 49, Bell Syst Tech J

  • Lustig IJ, Marsten RE, Shanno DF (1994) Interior point methods for linear programming: computational state of the art. ORSA J Comput 6(1):1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Mészáros C (1997) The augmented system variant of IPMs in two-stage stochastic linear programming. Eur J Oper Res 101(2):317–327

    Article  MATH  Google Scholar 

  • Mészáros C (1998) Ordering heuristics in interior point LP methods. In: Gianessi F, Komlósi S, Rapcsák T (eds) New trends in mathematical programming. Kluwer Academic, Norwel, pp 203–221

    Chapter  Google Scholar 

  • Mészáros C (1999) The BPMPD interior-point solver for convex quadratic problems. Optim Methods Softw 11/12:431–449

    Article  Google Scholar 

  • Mészáros C (2007) Detecting dense columns in linear programs for interior point methods. Comput Optim Appl 36(2–3):309–320

    Article  MathSciNet  MATH  Google Scholar 

  • Mészáros C (2010) On the implementation of interior point methods for dual-core platforms. Optim Methods Softw 25(3):449–456

    Article  MathSciNet  MATH  Google Scholar 

  • Mészáros C, Suhl UH (2004) Advanced preprocessing techniques for linear and quadratic programming. OR Spektrum 25:575–595

    Article  Google Scholar 

  • Mittelmann HD, Spellucci P (1998) Decision tree for optimization software. World Wide Web. http://plato.la.asu.edu/guide.html

  • Parter SV (1961) The use of linear graphs in Gaussian elimination. SIAM Rev 3:130–191

    MathSciNet  Google Scholar 

  • Rothberg E (1996) Ordering sparse matrices using approximate minimum local fill. Technical report, Silicon Graphics Inc., Mountain View, CA 94043

  • Rothberg E, Hendrickson B (1998) Sparse matrix ordering methods for interior point linear programming. INFORMS J Comput 10(1):107–113

    Article  MathSciNet  Google Scholar 

  • Yannakakis M (1981) Computing the minimum fill-in is NP-complete. SIAM J Algebr Discrete Methods 2:77–79

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Mészáros.

Additional information

This work was supported in part by Hungarian Research Fund OTKA K-77420 and K-60480.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mészáros, C. On sparse matrix orderings in interior point methods. Optim Eng 14, 519–527 (2013). https://doi.org/10.1007/s11081-013-9233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-013-9233-7

Keywords

Navigation