, Volume 46, Issue 1, pp 45-58
Date: 02 Oct 2007

A second order numerical scheme for the solution of the one-dimensional Boussinesq equation

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A predictor–corrector (P-C) scheme is applied successfully to a nonlinear method arising from the use of rational approximants to the matrix-exponential term in a three-time level recurrence relation. The resulting nonlinear finite-difference scheme, which is analyzed for local truncation error and stability, is solved using a P-C scheme, in which the predictor and the corrector are explicit schemes of order 2. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. The behaviour of the P-C/MPC schemes is tested numerically on the Boussinesq equation already known from the bibliography free of boundary conditions. The numerical results are derived for both the bad and the good Boussinesq equation and conclusions from the relevant known results are derived.