, Volume 65, Issue 4, pp 413-419
Date: 07 Dec 2010

Robust stability of recurrent neural networks with ISS learning algorithm

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this paper, an input-to-state stability (ISS) approach is used to derive a new robust weight learning algorithm for dynamic neural networks with external disturbance. Based on linear matrix inequality (LMI) formulation, the ISS learning algorithm is presented to not only guarantee exponential stability but also reduce the effect of an external disturbance. It is shown that the design of the ISS learning algorithm can be achieved by solving LMI, which can be easily facilitated by using some standard numerical packages. A numerical example is presented to demonstrate the validity of the proposed learning algorithm.