Skip to main content
Log in

Complex order van der Pol oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper a complex-order van der Pol oscillator is considered. The complex derivative \(D^{\alpha\pm\jmath\beta}\), with α,βR + is a generalization of the concept of integer derivative, where α=1, β=0. By applying the concept of complex derivative, we obtain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic solutions of the two oscillators are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, E., Elgazzar, A.S.: On fractional order differential equations model for nonlocal epidemics. Phys. A: Stat. Mech. Appl. 379(2), 607–614 (2007)

    Article  Google Scholar 

  2. Altmann, J.: Acoustic and seismic signals of heavy military vehicles for co-operative verification. J. Sound Vib. 273(4–5), 713–740 (2004)

    Article  Google Scholar 

  3. Appelbe, B., Rachinskii, D., Zhezherun, A.: Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis. Phys. B: Condens. Matter 403(2–3), 301–304 (2008)

    Article  Google Scholar 

  4. Attari, M., Haeri, M., Tavazoei, M.S.: Analysis of a fractional order Van der Pol-like oscilattor via describing function method. Nonlinear Dyn. (2010). doi:10.1007/s11071-009-9647-0

    MATH  Google Scholar 

  5. Baleanu, D.: About fractional quantization and fractional variational principles. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2520–2523 (2009)

    Article  Google Scholar 

  6. Barbosa, R.S., Tenreiro Machado, J.A., Silva, M.F.: Discretization of complex-order algorithms for control applications. J. Vib. Control 14(9–10), 1349–1361 (2008)

    Article  MathSciNet  Google Scholar 

  7. Barbosa, R.S., Tenreiro Machado, J.A., Vinagre, B.M., Calderón, A.J.: Analysis of the Van der Pol oscillator containing derivatives of fractional order. J. Vib. Control 13(9–10), 1291–1301 (2007)

    Article  MATH  Google Scholar 

  8. Bellman, R., Kalaba, R.: Selected Papers on Mathematical Trends in Control Theory. Dover, New York (1964)

    MATH  Google Scholar 

  9. Chen, J.-H., Chen, W.-C.: Chaotic dynamics of the fractionally damped van der Pol equation. Chaos Solitons Fractals 35, 188–198 (2008)

    Article  Google Scholar 

  10. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  11. Darwish, M.A.: On quadratic integral equation of fractional orders. J. Math. Anal. Appl. 311(1), 112–119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elabbasy, E.M., El-Dessoky, M.M.: Synchronization of van der Pol oscillator and Chen chaotic dynamical system. Chaos Solitons Fractals 36(5), 1425–1435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ge, Z.-M., Jhuang, W.-R.: Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos Solitons Fractals 33(1), 270–289 (2007)

    Article  MATH  Google Scholar 

  14. Ge, Z.-M., Hsu, M.-Y.: Chaos in a generalized van der Pol system and in its fractional order system. Chaos Solitons Fractals 33, 1711–1745 (2007)

    Article  MATH  Google Scholar 

  15. Ge, Z.-M., Hsu, M.-Y.: Chaos excited chaos synchronizations of integral and fractional order generalized van der Pol systems. Chaos Solitons Fractals 36, 592–604 (2008)

    Article  MATH  Google Scholar 

  16. Ge, Z.-M., Zhang, A.-R.: Chaos in a modified van der Pol system and in its fractional order systems. Chaos Solitons Fractals 32, 1791–1822 (2007)

    Article  Google Scholar 

  17. Glass, L.: Theory of Heart. Springer, New York (1990)

    Google Scholar 

  18. Hartley, T.T., Adams, J.L., Lorenzo, C.F.: Complex-order distributions. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, DETC2005-84952, on CD-ROM (2005)

  19. Hartley, T.T., Lorenzo, C.F., Adams, J.L.: Conjugated-order differintegrals. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, DETC2005-84951, on CD-ROM (2005)

  20. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  21. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17, 257–278 (1955)

    Article  Google Scholar 

  22. FitzHugh, R.: Motion picture of nerve impulse propagation using computer animation. J. Appl. Physiol. 25, 628–630 (1968)

    Google Scholar 

  23. Gorenflo, R., Mainardi, F.: Fractional calculus, integral and differential equations of fractional order. In: Carpenteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, Berlin (1997)

    Google Scholar 

  24. Gorenflo, R., Mainardi, F., Moretti, D., Pardisi, P.: Time-fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29(1–4), 129–143 (2002)

    Article  MATH  Google Scholar 

  25. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  26. Machado, J.T.: Analysis and design of fractional-order digital control systems. J. Syst. Anal. Model. Simul. 27, 107–122 (1997)

    MATH  Google Scholar 

  27. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  29. Momani, S., Odibat, Z.: Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 355(4–5), 271–279 (2006)

    Article  MATH  Google Scholar 

  30. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  31. Nigmatullin, R.: The statistics of the fractional moments: is there any chance to “read quantitatively” any randomness? Signal Process. 86(10), 2529–2547 (2006)

    Article  MATH  Google Scholar 

  32. Nigmatullin, R., Baleanu, D.: Is it possible to derive newtonian equations of motion with memory? Int. J. Theor. Phys. 49(4), 701–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9–12 (2010)

    Article  MATH  Google Scholar 

  34. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, San Diego (1974)

    Google Scholar 

  35. Oustaloup, A.: La commande CRONE: commande robuste d’ordre non entier. Hermes, Paris (1991)

    MATH  Google Scholar 

  36. Pinto, C.M.A., Tenreiro Machado, J.A.: Complex order biped rhythms. Int. J. Bifurc. Chaos (2010, submitted)

  37. Pinto, C.M.A., Tenreiro Machado, J.A.: Fractional central pattern generators for bipedal locomotion. Nonlinear Dyn. 62(1–2), 27–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)

    Google Scholar 

  39. Podlubny, I.: Fractional-order systems and PID-controllers. IEEE Trans. Automat. Control 44(1), 208–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tavazoei, M.S., Haeri, M., Attari, M., Bolouki, S., Siami, M.: More details on analysis of fractional-order Van der Pol oscillator. J. Vib. Control 15(6), 803–819 (2009)

    Article  MathSciNet  Google Scholar 

  41. Tenreiro Machado, J.: Discrete-time fractional-order controllers. J. Fract. Calc. Appl. Anal. 4, 47–66 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Tenreiro Machado, J.A.: Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 14(9–10), 3492–3497 (2009)

    Article  Google Scholar 

  43. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, New York (1993)

    MATH  Google Scholar 

  44. van der Pol, B.: On relaxation-oscillations. Philos. Mag. 7(2), 978–992 (1926)

    Google Scholar 

  45. van der Pol, B.: Forced oscillations in a circuit with nonlinear resistance (receptance with reactive triode). Philos. Mag. 3, 65–80 (1927)

    Google Scholar 

  46. van der Pol, B., van der Mark, J.: Frequency demultiplication. Nature 120, 363–364 (1927)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla M. A. Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, C.M.A., Tenreiro Machado, J.A. Complex order van der Pol oscillator. Nonlinear Dyn 65, 247–254 (2011). https://doi.org/10.1007/s11071-010-9886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9886-0

Keywords

Navigation