Skip to main content
Log in

Approximating fractional derivatives in the perspective of system control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The theory of fractional calculus goes back to the beginning of the theory of differential calculus, but its application received attention only recently. In the area of automatic control some work was developed, but the proposed algorithms are still in a research stage. This paper discusses a novel method, with two degrees of freedom, for the design of fractional discrete-time derivatives. The performance of several approximations of fractional derivatives is investigated in the perspective of nonlinear system control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, San Diego (1974)

    Google Scholar 

  2. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  3. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  4. Bagley, R.L., Torvik, P.J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  MATH  Google Scholar 

  5. Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi 133, 425–430 (1986)

    Article  Google Scholar 

  6. Le Méhauté, A.: Fractal Geometries: Theory and Applications. Penton, Cleveland (1991)

    MATH  Google Scholar 

  7. Oustaloup, A.: La commande CRONE: commande robuste d’ordre non entier. Hermes, Paris (1991)

    MATH  Google Scholar 

  8. Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)

    Article  Google Scholar 

  9. Oustaloup, A.: La dérivation non entier: théorie, synthèse et applications. Hermes, Paris (1995)

    MATH  Google Scholar 

  10. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Machado, J.T.: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27(2–3), 107–122 (1997)

    MATH  Google Scholar 

  12. Podlubny, I.: Fractional-order systems and PI λ D μ-controllers. IEEE Trans. Automat. Contr. 44(1), 208–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  14. Al-Alaoui, M.A.: Novel digital integrator and differentiator. Electron. Lett. 29(4), 376–378 (1993)

    Article  Google Scholar 

  15. Al-Alaoui, M.A.: Filling the gap between the bilinear and the backward-difference transforms: an interactive design approach. Int. J. Electr. Eng. Educ. 34(4), 331–337 (1997)

    Google Scholar 

  16. Smith, J.M.: Mathematical Modeling and Digital Simulation for Engineers and Scientists, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  17. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst.—I. Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  18. Tseng, C.C.: Design of fractional order digital fir differentiators. IEEE Signal Process. Lett. 8(3), 77–79 (2001)

    Article  Google Scholar 

  19. Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340(5), 349–362 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen, Y.Q., Vinagre, B.M.: A new IIR-type digital fractional-order differentiator. Signal Process. 83(11), 2359–2365 (2003)

    Article  MATH  Google Scholar 

  21. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Barbosa, R.S., Machado, J.T., Ferreira, I.M.: Least-squares design of digital fractional-order operators. In: Proceedings of the First IFAC Workshop on Fractional Differentiation and Its Applications, Bordeaux, France, pp. 434–439 (2004)

  23. Barbosa, R.S., Machado, J.T., Silva, M.F.: Time domain design of fractional differintegrators using least squares approximations. Signal Process. 86(10), 2567–2581 (2006)

    Article  Google Scholar 

  24. Machado, J.T., Galhano, A.: A new method for approximating fractional derivatives: application in non-linear control. In: ENOC 2008—6th EUROMECH Conference, Saint Petersburg, Russia (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Tenreiro Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, J.A.T., Galhano, A. Approximating fractional derivatives in the perspective of system control. Nonlinear Dyn 56, 401–407 (2009). https://doi.org/10.1007/s11071-008-9409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9409-4

Keywords

Navigation