Skip to main content

Advertisement

Log in

Decline in horizontal surface visibility over India (1961–2008) and its association with meteorological variables

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Horizontal surface visibility range, one of the simplest measures of local atmospheric pollution, is critical for aviation, surface transport besides long-term impact on human health and climate. Long-term observations from multiple stations (including airports) across the world show statistically significant decline in visibility. We have studied climatology and trends of morning poor visibility days (PVD, visibility <4 km) and afternoon good visibility days (GVD, visibility >10 km) based on 279 surface meteorological stations well distributed over India for the period 1961–2008. During last 5 decades, all India averaged range of annual morning PVD has increased from 6.7 to 27.3 % days, while the range of afternoon GVD has decreased from 76.1 to 30.6 % days. Annually, the morning PVD increased significantly at 3.3 % days per decade, and the afternoon GVD declined significantly at −8.6 % days per decade. Seasonally, the highest increase in morning PVD has occurred in winter (+4.3 % days per decade), while post-monsoon has the highest decrease in afternoon GVD (−9.2 % days per decade). In spatial distribution, visibility has decreased nationwide especially over Indo-Gangetic (IG) plains, central, east and northeast India which is due to increased wintertime fog, water vapor and aerosol loading. The IG plains suffer from increased fog or smog and aerosol loading during wintertime. Long-term visibility impairment over India is visible through increasing morning PVD (decreasing GVD) and decreasing afternoon GVD (increasing PVD) which are spatially well correlated with increasing relative humidity and decreasing wind speed (seasonal).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Biggs TW, Scott CA, Rajagopalan B, Turral HN (2007) Trends in solar radiation due to clouds and aerosols, southern India, 1952–1997. Int J Climatol 27:1505–1518

    Article  Google Scholar 

  • Bishoi B, Prakash A, Jain VK (2009) A comparative study of air quality index based on factor analysis and US-EPA methods for an urban environment. Aerosol Air Qual Res 9:1–17

    Google Scholar 

  • Chandiramani WG, Pradhan SK, Kishan D, Manral NS (1975) A case study of poor visibility over Bombay airport. Ind J Met Hydrol Geophys 26:208–210

    Google Scholar 

  • Chang WL, Koo E (1986) A study of visibility trends in Hong Kong (1968–1982). Atmos Environ 20:1847–1858

    Article  Google Scholar 

  • Chang D, Song Y, Liu B (2009) Visibility trends in six megacities in China 1973–2007. Atmos Res 94:161–167

    Article  Google Scholar 

  • Dayan U, Levy I (2005) The influence of meteorological conditions and atmospheric circulation types on PM 10 and visibility in Tel Aviv. J Appl Meteor 44:606–619

    Article  Google Scholar 

  • De US, Rao GSP, Jaswal AK (2001) Visibility over Indian airports during winter season. Mausam 52:717–726

    Google Scholar 

  • Doyale M, Dorling S (2002) Visibility trends in UK, 1950–1997. Atmos Environ 36:3161–3172

    Article  Google Scholar 

  • Dzubay TE, Steven RK, Lewis CW, Hern DH, Courtney WJ, Tesch JW, Mason MA (1982) Visibility and aerosol composition in Houston, Texas. Environ Sci Tecnol 16:514–525

    Article  Google Scholar 

  • Gomez B, Smith CG (1984) Atmospheric pollution and fog frequency in Oxford. Weather 39:379–384

    Article  Google Scholar 

  • Gomez B, Smith CG (1987) Visibility at Oxford 1926–1985. Weather 42:98–106

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (1992) The changing frequency of dust storms through time. Clim Chan 20:197–225

    Google Scholar 

  • Green CR, Battan LJ (1967) A study of visibility versus population growth in Arizona. J Ariz Acad Sci 4:226–228

    Article  Google Scholar 

  • Guo H, Xu M and Hu Q (2010) Changes in near-surface wind speed in China:1969–2005; Int J Climatol. doi:10.1002/joc.2091

  • Hoffmann HE, Kuehnemann W (1979) Comparison of the results of two measuring methods determining the horizontal stand up visibility with visual range. Atmos Environ 13:1629–1634

    Article  Google Scholar 

  • Horvath H (1994) Atmospheric aerosols, atmospheric visibility. J Aerosol Sci 25:23–24

    Article  Google Scholar 

  • Inhaber H (1976) Changes in Canadian national visibility. Nature 260:129–130

    Article  Google Scholar 

  • Jana B, Roy P, Majumder M, Mazumdar A (2008) A review on GHG emission as CO2 equivalent from transport system in view of advanced vehicular technology and improved fuel quality. http://philica.com/. Article number 131

  • Jaswal AK (2009) Sunshine duration climatology and trends in association with other climatic factors over India for 1970–2006. Mausam 60:437–454

    Google Scholar 

  • Jaswal AK, Koppar AL (2011) Recent climatology and trends in surface humidity over India for 1969–2007. Mausam 62:145–162

    Google Scholar 

  • Jaswal AK, Rao GSP, De US (2008) Spatial and temporal characteristics of evaporation trends over India during 1971–2000. Mausam 59:149–158

    Google Scholar 

  • Kaiser DP, Qian Y (2002) Decreasing trends in sunshine duration over China for 1954–1998: indication of increased haze pollution? Geophys Res Lett 21:2042. doi:10.1029/2002GL016057

    Article  Google Scholar 

  • Lee DO (1983) Trends in summer visibility in London and southern England 1962–1979. Atmos Environ 17:151–159

    Article  Google Scholar 

  • Lee DO (1988) The choice of visibility statistics in the analysis of long term visibility trends in southern England. Weather 43:332–338

    Article  Google Scholar 

  • Lee DO (1990) The influence of wind direction, circulation type and air pollution emissions on summer visibility trends in southern England. Atmos Environ 24A:195–201

    Google Scholar 

  • Lee DO (1994) Regional variations in long-term visibility trends in the UK, 1962–1990. Geography 79:108–121

    Google Scholar 

  • Lewis WH Jr (1980) Protection against visibility impairment under the Clear Air Act. J Air Pollut Control As 30:118–120

    Article  Google Scholar 

  • Liang F, Xia XA (2005) Long-term trends in solar radiation and the associated climatic factors over China for 1961–2000. Ann Geophys 23:2425–2432

    Google Scholar 

  • Lin CH, Wu YL, Lai CH, Watson JG, Chow JC (2008) Air quality measurements from the southern particulate matter supersite in Taiwan. Aerosol Air Qual Res 8:233–264

    Google Scholar 

  • Malm WC (1999) Introduction to visibility; Cooperative Institute for Research in the Atmosphere (CIRA). Colorado State University, USA

    Google Scholar 

  • Malm WC, Day DE (2001) Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos Environ 35:2845–2860

    Article  Google Scholar 

  • Malm WC, Leiker KK, Molenar JV (1980) Human perception of visibility. J Air Pollu Control As 30:122–131

    Article  Google Scholar 

  • Malm WC, Schichtel BA, Pitchford ML, Ashbaugh LL, Eldred RA (2004) Spatial and monthly trends in speciated fine particle concentration in the United States. J Geophys Res 109:D033306. doi:10.1029/2003JD003739

  • McTainsh GH, Burgess R, Pitblado JR (1989) Aridity, drought and dust storms in Australia. J Arid Environ 16:11–22

    Google Scholar 

  • McVicar TR, Van Niel TG, Li LT, Roderick ML, Rayner DP, Ricciardulli L, Donohue RJ (2008) Wind speed climatology and trends for Australia, 1975–2006: capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys Res Lett 35:L20403. doi:10.1029/2008GL035627

    Article  Google Scholar 

  • Miller ME, Canfield NL, Ritter TA, Weaver CR (1972) Visibility changes in Ohio, Kentucky and Tennessee from 1962–1969. Mon Wea Rev 100:67–71

    Article  Google Scholar 

  • Mukherjee AK, Daniel CEJ, Sethumadhavan K (1980) Deteriorating visibility at Bombay airport due to atmospheric pollutants. Mausam 31:287–290

    Google Scholar 

  • Munn RE (1973) Secular increases in summer haziness in the Atlantic provinces. Atmosphere 11:156–161

    Google Scholar 

  • Naegele PS, Sellers WD (1981) A study of visibility in eighteen cities in the Western and Southwestern United States. Mon Weather Rev 109:2394–2400

    Article  Google Scholar 

  • Padma Kumari B, Londhe AL, Daniel S, Jadhav DB (2007) Observational evidence of solar dimming: offsetting surface warming over India. Geophys Res Lett 34:L21810. doi:10.1029/2007GL031133

    Article  Google Scholar 

  • Padmanabhamurty B (1984) Some aspects of the urban climates of India. In: Proceedings of the technical conference on urban climatology and its application with special regards to tropical areas, Mexico 26–30 November 1984, WMO-652 136-165

  • Pirazzoli PA, Tomasin A (2003) Recent near-surface wind changes in the central Mediterranean and Adriatic areas. Int J Climatol 23:963–973

    Article  Google Scholar 

  • Prasad AK, Singh RP (2007) Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic Plains using AERONET and MODIS data. J Geophys Res Atmos 112:D09208. doi:10.1029/2006JD007778

  • Prasad AK, Singh RP, Singh A (2004) Variability of aerosol optical depth over Indian subcontinent using MODIS data. J Indian Soc Remote Sens 32:313–316

    Article  Google Scholar 

  • Prasad AK, Singh RP, Kafatos M (2006) Influence of coal based thermal power plants on aerosol optical properties in the Indo-Gangetic basin. Geophys Res Lett 33:L05805. doi:10.1029/2005GL023801

  • Prasad AK, Singh S, Chauhan SS, Srivastava MK, Singh RP, Singh R (2007) Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms. Atmos Environ 41(29):6289–6301

    Article  Google Scholar 

  • Prasad AK, El-Askary H, Asrar GR, Kafatos M, Jaswal A (2011) Melting of major glaciers in Himalayas: role of desert dust and anthropogenic aerosols. In: Proceedings of planet earth 2011—global warming challenges and opportunities for policy and practice, InTECH open access publisher. ISBN 978-953-307-733-8

  • Prasad AK, Singh RP, Kafatos M (2012), Influence of coal-based thermal power plants on the spatial–temporal variability of tropospheric NO2 column over India. Environ Monit Assess. doi:10.1007/s10661-011-2087-6

  • Pryor SC, Barthelmie RJ, Young DT, Takle ES, Arritt RW, Flory D, Gutowski WJ Jr, Nunes A, Roads J (2009) Wind speed trends over the contiguous United States. J Geophys Res 114:D14105. doi:10.1029/2008JD011416

    Article  Google Scholar 

  • Qin J, Yang L (2000) Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980–1994. Atmos Environ 34:603–609

    Article  Google Scholar 

  • Ramanathan V, Chung C, Kim D, Bettege T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci 102:5326–5333

    Article  Google Scholar 

  • Reid JS, Eck TF, Christopher SA, Koppmann R, Dubovik O, Eleuterio DP, Holben BN, Reid EA, Zhang J (2005) A review of biomass burning emissions part III: intensive optical properties of biomass burning particles; Atmos. Chem Phys 5:827–849

    Google Scholar 

  • Saraf A, Bora A, Das J, Rawat V, Sharma K, Jain S (2011) Winter fog over the Indo-Gangetic Plains: mapping and modelling using remote sensing and GIS. Nat Hazards 58(1):199–220

    Article  Google Scholar 

  • Sarkar S, Chokngamwong R, Cervone G, Singh RP, Kafatos M (2006) Variability of aerosol optical depth and aerosol forcing over India. Adv Space Res 37:2153–2159

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, Hoboken, NJ

    Google Scholar 

  • Sequeria R, Lai KH (1998) The effect of meteorological parameters and aerosol constituents on visibility in urban Hong Kong. Atmos Environ 32:2865–2871

    Article  Google Scholar 

  • Shendrikar AD, Steinmetz WK (2003) Integrating nephelometer measurements for the airborne fine particulate matter (PM 2.5) mass concentrations. Atmos Environ 37:1383–1392

    Article  Google Scholar 

  • Singh S, Nath S, Kohli R, Singh R (2005) Aerosols over Delhi during pre-monsoon months: characteristics and effects on surface radiation forcing. Geophys Res Lett 32:L13808. doi:10.1029/2005GL023062

    Article  Google Scholar 

  • Sloane CS (1982a) Visibility trends—I. Methods of analysis. Atmos Environ 16:41–51

    Article  Google Scholar 

  • Sloane CS (1982b) Visibility trends II: Mideastern United States. Atmos Environ 16:2309–2321

    Article  Google Scholar 

  • Sloane CS (1983) Summertime visibility declines: meteorological influences. Atmos Environ 17:763–774

    Article  Google Scholar 

  • Sloane CS (1984) Meteorologically adjusted air quality trends: visibility. Atmos Environ 18:1217–1229

    Article  Google Scholar 

  • Srivastava MK, Srivastava SK, Saha A, Tiwari S, Singh S, Dumka UC, Singh BP, Singh NP (2011) Aerosol optical properties over Delhi and Manora Peak during a rare dust event in early April 2005. Int J Remote Sens 32(23):7939–7954

    Article  Google Scholar 

  • Trijonis J (1984) Effect of diesel vehicles on visibility in California. Sci Total Environ 36:131–140

    Article  Google Scholar 

  • Tsai YI (2005) Atmospheric visibility trends in an urban area in Taiwan 1961–2003. Atmos Environ 39:5555–5567

    Article  Google Scholar 

  • Tuller SE (2004) Measured wind speed trends on the west coast of Canada. Int J Climatol 24:1359–1374. doi:10.1002/joc.1073

    Article  Google Scholar 

  • Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK (2005) Residential biofuels in south Asia: Carbonaceous aerosol emissions and climate impacts. Science 307:1454–1456

    Google Scholar 

  • Wang K, Dickinson RE, Liang S (2009) Clear sky visibility has decreased over land globally from 1973 to 2007. Science 323:1468–1470

    Article  Google Scholar 

  • Xu S, Barsha NAF, Li J (2008) Analyzing regional influence of particulate matter on the city of Beijing, China. Aerosol Air Qual Res 8:78–93

    Google Scholar 

Download references

Acknowledgments

We thank Director General of Meteorology, India Meteorological Department, New Delhi, for giving permission to publish this study. We thank SSAI and IGC for partial financial support to conduct this study (AKP). We express our sincere thanks to referee(s) for suggesting improvements in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Jaswal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaswal, A.K., Kumar, N., Prasad, A.K. et al. Decline in horizontal surface visibility over India (1961–2008) and its association with meteorological variables. Nat Hazards 68, 929–954 (2013). https://doi.org/10.1007/s11069-013-0666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0666-2

Keywords

Navigation