, Volume 64, Issue 2, pp 1639-1656,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 01 Sep 2012

A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran


This study describes the application of logistic regression to rock-fall susceptibility mapping along 11 km of a mountainous road on the Salavat Abad saddle, in southwest Kurdistan, Iran. To determine the factors influencing rock-falls, data layers of slope degree, slope aspect, slope curvature, elevation, distance to road, distance to fault, lithology, and land use were analyzed by logistic regression analysis. The results are shown as rock-fall susceptibility maps. A spatial database, which included 68 sites (34 rock-fall point cells with value of 1 and 34 no rock-fall point cells with value of 0) was developed and analyzed using a Geographic Information System, GIS. The results are shown as four classes of rock-fall susceptibility. In this study, distance to fault, lithology, slope curvature, slope degree, and distance to road were found to be the most important factors affecting rock-fall. It was concluded that about 76 % of the study area can be classified as having moderate and high susceptibility classes. Rock-fall point cells were used to verify results of the rock-fall susceptibility map using success curve rate and the area under the curve. The verification results showed that the area under the curve for rock-fall susceptibility map is 77.57 %. The results from this study demonstrated that the use of a logistic regression model within a GIS framework is useful and suitable for rock-fall susceptibility mapping. The rock-fall susceptibility map can be used to reduce susceptibility associated with rock-fall.