, Volume 64, Issue 2, pp 1475-1490
Date: 03 Aug 2012

Regional attributes of hurricane surge response functions for hazard assessment

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Accurate quantification of hurricane surge probabilities is critically important for coastal planning and design. Recently, the joint probability method has been shown to yield statistically reliable surge probabilities and has quickly become the method of choice for extreme-value surge analysis in the United States. A main disadvantage of the joint probability method is the requirement to have accurate computational surge simulations for a large array of hurricane conditions. Recently, this shortcoming has been overcome by using a variety of interpolation schemes to reduce the number of surge simulations required to an optimal sample for joint probability analysis. One interpolation scheme uses response functions, or physically based dimensionless scaling laws, that consider the relative impact of hurricane landfall position, central pressure, and storm size on surge magnitude at the location of interest. Here, the influence of regional changes in bathymetry on the physically based response function form is investigated. It will be shown that the influence of continental shelf width on surge generation along a continuous coast is coupled with the influence of storm size and that this coupled physical effect can be treated within the response functions via dimensionless scaling. The surge response function model presented here has an algebraic form for rapid calculation. This model performs well for the entire 600-km Texas coast, yielding accurate surge estimates (root-mean-square errors less than 0.22 m and R 2 correlations better than 0.97) with virtually no bias (mean error magnitudes less than 0.03 m).