, Volume 36, Issue 1, pp 1-6

Central and Peripheral Cytokines Mediate Immune-Brain Connectivity

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The immune system is a homeostatic system that contributes to maintain the constancy of the molecular and cellular components of the organism. Immune cells can detect the intrusion of foreign antigens or alteration of self-components and send information to the central nervous system (CNS) about this kind of perturbations, acting as a receptor sensorial organ. The brain can respond to such signals by emitting neuro/endocrine signals capable of affecting immune reactivity. Thus, the immune system, as other physiologic systems, is under brain control. Under disease conditions, when priorities for survival change, the immune system can, within defined limits, reset brain-integrated neuro-endocrine mechanisms in order to favour immune processes at the expenses of other physiologic systems. In addition, some cytokines initially conceived as immune products, such as IL-1 and IL-6, are also produced in the “healthy” brain by glial cells and even by some neurons. These and other cytokines have the capacity to affect synaptic plasticity acting as mediators of interactions between astrocytes and pre- and post-synaptic neurons that constitute what is actually defined as a tripartite synapse. Since the production of cytokines in the brain is affected by peripheral immune and central neural signals, it is conceivable that tripartite synapses can, in turn, serve as a relay system in immune-CNS communication.

This article is based on our presentation at the International Symposium “Immune System of the Brain: Neurochemical and Neuroendocrine Aspects” dedicated to the 80th Anniversary of Prof. Dr. Armen Galoyan and is written in his honour.