, Volume 35, Issue 7, pp 976-985
Date: 23 Feb 2010

Urokinase-Type Plasminogen Activator Induces BV-2 Microglial Cell Migration Through Activation of Matrix Metalloproteinase-9

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In response to brain injury, microglia migrate and accumulate in the affected sites, which is an important step in the regulation of inflammation and neuronal degeneration/regeneration. In this study, we investigated the effect of urokinase-type plasminogen activator (uPA) on the BV-2 microglial cell migration. At resting state, BV-2 microglial cells secreted uPA and the release of uPA was increased by ATP, a chemoattractant released from injured neuron. The migration of BV-2 cell was significantly induced by uPA and inhibited by uPA inhibitors. In this condition, uPA increased the activity of matrix metalloproteinase (MMP-9) and the inhibition of MMP activity with pharmacological inhibitors against either uPA (amiloride) or MMP (phenanthrolene and SB-3CT) effectively prevented BV2 cell migration. Interestingly, the level of MMP-9 protein and mRNA in the cell were not changed by uPA. These results suggest that the increase of MMP-9 activity by uPA is regulated at the post-translational level, possibly via increased activation of the enzyme. Unlike the uPA inhibitor, plasmin inhibitor PAI-1 only partially inhibited uPA-induced cell migration and MMP-9 activation. The incubation of recombinant MMP-9 with uPA resulted in the activation of MMP-9. These results suggest that uPA plays a critical role in BV-2 microglial cell migration by activating pro-MMP-9, in part by its direct action on MMP-9 and also in part by the activation of plasminogen/plasmin cascade.