, Volume 29, Issue 11, pp 1961-1977

Biochemical Aspects of Neurodegeneration in Human Brain: Involvement of Neural Membrane Phospholipids and Phospholipases A2

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Neural membrane phospholipids are hydrolyzed by a group of enzymes known as phospholipases. This process results in the generation of second messengers such as arachidonic acid, eicosanoids, platelet activating factor, and diacylglycerols. High levels of these metabolites are neurotoxic and are associated with neurodegeneration. The collective evidence from many studies suggests that neural membrane phospholipid metabolism is disturbed in neural trauma and neurodegenerative diseases. This disturbance is caused by the stimulation of phospholipases A2. Stimulation of these enzymes produces changes in membrane permeability, fluidity, and alteration in ion homeostasis. Low calcium influx produces mild oxidative stress and results in neurodegeneration promoted by apoptosis, whereas a calcium overload generates high oxidative stress and causes neurodegeneration associated with necrosis. Alterations in phospholipid metabolism along with the accumulation of lipid peroxides and compromised energy metabolism may be responsible for neurodegeneration in ischemia, spinal cord trauma, head injury, and Alzheimer disease. The synthesis of phospholipases A2 inhibitors that cross the blood-brain barrier without harm may be useful for the treatment of acute neural trauma and neurodegenerative diseases.

Special issue dedicated to Dr. Lawrence F. Eng.