, Volume 91, Issue 2, pp 127-139
Date: 12 Sep 2008

In vivo bioluminescence imaging in an experimental mouse model for dendritic cell based immunotherapy against malignant glioma

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The value of bioluminescence imaging (BLI) for experimental cancer models has become firmly established. We applied BLI to the GL261 glioma model in the context of dendritic cell (DC) immunotherapy. Initial validation revealed robust linear correlations between in vivo, ex vivo and in vitro luciferase activity measurements. Ex vivo BLI demonstrated midline crossing and leakage of tumor cells. Orthotopically challenged mice followed with BLI showed an initial adaptation phase, after which imaging data correlated linearly with stereologically determined tumor dimensions. Transition from healthy to moribund state corresponded with an increasing in vivo flux but the onset of neurological deficit was clearly delayed compared to the onset of in vivo flux increase. BLI was implemented in prophylactic immunotherapy and imaging data were prognostic for therapy outcome. Three distinct response patterns were detected. Our data underscore the feasibility of in vivo BLI in an experimental immunotherapeutic setting in the GL261 glioma model.