, Volume 33, Issue 3, pp 217-236
Date: 16 Jan 2007

Early growth and photosynthetic responses to light in seedlings of three tropical species differing in successional strategies

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Containerized seedlings of three commercially important tropical species were grown under four different light treatments [i.e., 100 (open site), 45, 22 and 10% sunlight] for 130 days. Light-saturated photosynthesis (A max) and light saturation estimates (LSE) reflected the species successional status with Terminalia superba Engl. and Diels, the pioneer species showing largest mean A max and LSE at 100% sunlight, whereas at 10% sunlight, it showed the lowest A max and LSE. At 22% sunlight, Cedrela odorata L., an intermediate successional species had greater A max and LSE than Mansonia altissima A. Chev., a non-pioneer light demander and T. superba. T. superba had the lowest relative growth rate (RGR) at 10% sunlight and greatest net assimilation rate (NAR) at 100% sunlight; although a higher RGR at this light level was not seen for this species. Strong and positive linear mean A max–mean NAR relationship of C. odorata and T. superba indicated that differences in leaf photosynthetic rates of the two species were reflected in their NAR, which increased with increasing light. At final harvest, superior biomass production was found at 45% sunlight for all the species. Seedling responses in specific leaf area, leaf area ratio, leaf mass ratio and root mass ratio were typically those found along a light gradient. At the 100% sunlight, intrinsic water-use efficiency (WUE), F v/F m and final root system of the plants was generally superior in T. superba but at 10% sunlight, WUE was inferior in T. superba when compared to C. odorata and M. altissima, reflecting the respective species’ short-term acclimation to high or low light. Results of this study may have practical use in screening tropical tree species for use in plantation forestry.