Skip to main content
Log in

Inhibition of Bcl-2 Stimulates Neural Stem Cell Proliferation in Organotypic Cultures of Mouse Hippocampus

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The role of Bcl-1 in the proliferation and differentiation of hippocampal neural stem cells (NSC) was studied. Experiments were performed on organotypic cultures of mouse hippocampus. The selective Bcl-2 inhibitor HA14-1 (10 μM) was added to the incubation medium and its concentration was maintained at a constant level. The results showed that in the group with addition of HA14-1, the proportion of living cells was greater, and this was linked with higher levels of phosphohistone H3 and Oct3/4 expression, which is evidence for activation of NSC proliferation. At six weeks of incubation, addition of NA14-1 was associated with the formation of embryo-like bodies, which is evidence that dividing NSC do not undergo differentiation. The direction and level of NSC differentiation were assessed. The results showed that the level of CRMP-2 – a protein involved in axon growth – in the HA14-1 group decreased during NSC differentiation. The activity of ERK1/2 kinase of the MAPK signal cascade was determined, this providing indirect regulation of neuron differentiation. Decreases in ERK1/2 activity and CRMP-2 levels on addition of HA14-1 indicated inhibition of neuron differentiation. Thus, our studies showed that inhibition of Bcl-2 enhances the stimulation of NSC proliferation and provide evidence of the role of Bcl-2 in regulating the neuronal type of NSC differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abe-Dohmae, N. Harada, K. Yamada, and R. Tanaka, “Bcl-2 gene is highly expressed during neurogenesis in the central nervous system,” Biochem. Biophys. Res. Commun., 191, No. 3, 915–921 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. A. Armesilla-Diaz, P. Bragado, I. Del Valle, et al., “p53 regulates the self-renewal and differentiation of neural precursors,” Neuroscience, 158, No. 4, 378–1389 (2009).

    Article  Google Scholar 

  3. A. Blesch, P. Lu, and M. H. Tuszynski, “Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair,” Brain Res. Bull., 57, No. 6, 833–838 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. B. S. Bregman, J. V. Coumans, H. N. Dai, et al., “Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury,” Prog. Brain Res., 137, 257–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. D. F. Chen, G. E. Schneider, J. C. Martinou, and S. Tonegawa, “Bcl-2 promotes regeneration of severed axons in mammalian CNS,” Nature, 385, No. 6615, 434–439 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. E. V. Chernigovskaya, L. S. Nikitina, N. A. Dorofeeva, and M. V. Glazova, “Effects of selective Bcl-2 inhibitor HA14-1 treatments on functional activity of magnocellular vasopressinergic neurons of rat hypothalamus,” Neurosci. Lett., 437, No. 1, 59–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. E. V. Chernigovskaya, A. G. Taranukhin, M. V. Glazova, et al., “Apoptotic signaling proteins: possible participation in the regulation of vasopressin and catecholamines biosynthesis in the hypothalamus,” Histochem. Cell Biol., 124, No. 6, 523–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. D. S. Eom, W. S. Choi, Y. J. Oh, “Bcl-2 enhances neurite extension via activation of c-Jun N-terminal kinase,” Biochem. Biophys. Res. Commun., 314, No. 2, 377–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. A. V. Gilyarov, “Nestin in central nervous system cells,” Neurosci. Behav. Physiol., 38, No. 2, 165–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Y. Gu and Y. Ihara, “Evidence the collapsin response mediator protein-2 is involved in the dynamics of microtubules,” J. Biol. Chem., 275, No. 24, 17,917–17,920 (2000).

    Article  CAS  Google Scholar 

  11. A. P. Gulati, Y. M. Yang, D. Harter, et al., “Mutant human tumor suppressor p53 modulates the activation of mitogen-activated protein kinase and nuclear factor-kappaB, but not c-Jun N-terminal kinase and activated protein-1,” Mol. Carcinog., 45, No. 1, 26–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. C. B. Johansson, M. Svensson, L. Wallstedt, et al., “Neural stem cells in the adult human brain,” Exp. Cell Res., 253, No. 2, 733–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. T. A. Kosten, M. P. Galloway, R. S. Duman, et al., “Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures,” Neuropsychopharmacology, 33, No. 7, 1545–1558 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Y. K. Kwon, “Effect of neurotrophic factors on neuronal stem cell death,” J. Biochem. Mol. Biol., 35, No. 1, 87–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. S. W. Lee, L. Fang, M. Igarishi, et al., “Sustained activation of Ras/RAF/mitogen-activated protein kinase cascade by the tumor suppressor p53,” Proc. Natl. Acad. Sci. USA, 97, No. 15, 8302–8305 (2000).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. T. Lindsten, W. X. Zong, and C. B. Thompson, “Defining the role of the Bcl-2 family of proteins in the nervous system,” Neuroscientist, 11, No. 1, 10–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. G. P. Linette, Y. Li, K. Roth, and S. J. Korsmeyer, “Crosstalk between cell death and cell cycle progression: BCL2 regulates NFAT-mediated activation,” Proc. Natl. Acad. Sci. USA, 93, No. 18, 9545–9552 (1996).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. W. Liu, W. Yue, and R. Wu, “Overexpression of Bcl-2 promotes survival and differentiation of neuroepithelial stem cells after transplantation into rat aganglionic colon,” Stem Cell Res. Ther., 4, No. 1, 7 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. D. E. Merry, D. J. Veis, W. F. Hickey, and S. J. Korsmeyer, “Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS,” Development, 120, No. 2, 301–311 (1994).

    CAS  PubMed  Google Scholar 

  20. T. Okuda, K. Tagawa, M. L. Qi, et al., “Oct3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo,” Brain Res. Mol. Brain Res., 132, No. 1, 18–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. C. Park, M. Kang, Y. K. Kwon, et al., “Inhibition of neuronal nitric oxide synthase enhances cell proliferation in the dentate gyrus of the adrenalectomized rat,” Neurosci. Lett., 309, No. 1, 9–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. M. Pesce and H. R. Scholer, “Oct4: control of totipotency and germline determination,” Mol. Reprod. Dev., 55, No. 4, 452–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. L. Sauer, D. Gitenay, C. Vo, and V. T. Baron, “Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells,” Oncogene, 29, No. 18, 2628–2637 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. S. Sola, M. M. Aranha, and C. M. Rodrigues, “Driving apoptosis-relevant proteins toward neural differentiation,” Mol. Neurobiol., 46, No. 2, 316–331 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. A. Suzumura, H. Takeuchi, G. Zhang, et al., “Roles of glia-derived cytokines on neuronal degeneration and regeneration,” Ann. N.Y. Acad. Sci., 1088, 219–229 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. G. Vairo, T. J. Soos, T. M. Upton, et al., “Bcl-2 retards cell cycle entry through p27(Kip 1), pRB relative p130, and altered E2F regulation,” Mol. Cell Biol., 20, No. 13, 4745–4753 (2000).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. C. Wiese, A. Rolletschek, G. Kania, et al., “Nestin expression – a property of multi-lineage progenitor cells?” Cell Mol. Life Sci., 61, No. 19–20, 2510–2522 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. S. H. Yang, T. Kalkan, C. Morrisroe, et al., “A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation,” PLoS Genet., 8, No. 12, e1003112, (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. S. N. Yoon, K. S. Kim, J. H. Cho, et al., “Phospholipase D1 mediates bFGF-induced Bcl-2 expression leading to neurite outgrowth in H19-7 cells,” Biochem. J., 441, No. 1, 407–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. T. Yoshimura, Y. Kawano, N. Arimura, et al., “GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity,” Cell, 120, No. 1, 137–149 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Glazova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 99, No. 8, p. 976–983, August, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaeva, Y.S., Nikitina, L.S., Chernigovskaya, E.V. et al. Inhibition of Bcl-2 Stimulates Neural Stem Cell Proliferation in Organotypic Cultures of Mouse Hippocampus. Neurosci Behav Physi 45, 517–522 (2015). https://doi.org/10.1007/s11055-015-0104-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0104-x

Keywords

Navigation