Skip to main content
Log in

ROS-induced toxicity: exposure of 3T3, RAW264.7, and MCF7 cells to superparamagnetic iron oxide nanoparticles results in cell death by mitochondria-dependent apoptosis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Superparamagnetic nanoparticles (Fe3O4, SPIO) have been used as magnetic resonance imaging enhancers for years. However, bio-safety issues concerning nanoparticles remain largely unexplored. Of particular concern is the possible cellular impact of nanoparticles during SPIO uptake and subsequent oxidative stress. SPIO causes cell death by apoptosis via a little understood mitochondrial pathway. To more closely examine this process, three kinds of cells—3T3, RAW264.7, and MCF7—were treated with SPIO coated with polyethylene glycol (SPIO-PEG) and monitored by transmission electron microscopy (TEM), using cytotoxicity evaluation, mitochondrial activity, reactive oxygen species (ROS) generation, and Annexin V assay. TEM revealed that SPIO-PEG nanoparticles surrounded the cellular endosome membrane, creating a bulge in the endosome. Compared to 3T3 cells, greater numbers of SPIO-PEG nanoparticles infiltrated the mitochondria of RAW264.7 and MCF7 cells. SPIO-PEG residency is associated with boosted ROS, with elevated levels of mitochondrial activity, and advancement of cell apoptosis. Furthermore, correlation analysis showed that a polynomial model demonstrates a better fit than a linear model in MCF7, implying that cytotoxicity may have alternative impacts on cell death at different concentrations. Thus, we believe that MCF7 cell death results from the apoptosis pathway triggered by mitochondria, and we find lower cytotoxicity in 3T3. We propose that optimal levels of SPIO-PEG nanoparticles lead to increased levels of ROS and a resulting oxidative stress environment which will kill only cancer cells while sparing normal cells. This finding has great potential for use in cancer therapies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amstad E, Zurcher S, Mashaghi A, Wong JY, Textor M, Reimhult E (2009) Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small 5:1334–1342. doi:10.1002/smll.200801328

    Article  Google Scholar 

  • Chen CL et al (2011) A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging. Mol Imaging Biol 13:825–839. doi:10.1007/s11307-010-0430-x

    Article  Google Scholar 

  • Chen ZW et al (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6:4001–4012. doi:10.1021/nn300291r

    Article  Google Scholar 

  • Cho WS et al (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24. doi:10.1016/j.taap.2008.12.023

    Article  Google Scholar 

  • Colombo M et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334. doi:10.1039/c2cs15337h

    Article  Google Scholar 

  • Diaz B et al (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4:2025–2034. doi:10.1002/smll.200800199

    Article  Google Scholar 

  • Durazo SA, Kompella UB (2012) Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion 12:190–201. doi:10.1016/j.mito.2011.11.001

    Article  Google Scholar 

  • Hervouet E, Simonnet H, Godinot C (2007) Mitochondria and reactive oxygen species in renal cancer. Biochimie 89:1080–1088. doi:10.1016/j.biochi.2007.03.010

    Article  Google Scholar 

  • Huang D-M et al (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30:3645–3651. doi:10.1016/j.biomaterials.2009.03.032

    Article  Google Scholar 

  • Huang JG, Leshuk T, Gu FX (2011) Emerging nanomaterials for targeting subcellular organelles. Nano Today 6:478–492. doi:10.1016/j.nantod.2011.08.002

    Article  Google Scholar 

  • Irfan A, Cauchi M, Edmands W, Gooderham NJ, Njuguna J, Zhu HJ (2014) Assessment of temporal dose-toxicity relationship of fumed silica nanoparticle in human lung A549 cells by conventional cytotoxicity and H-1-NMR-based extracellular metabonomic assays. Toxicol Sci 138:354–364. doi:10.1093/toxsci/kfu009

    Article  Google Scholar 

  • Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y (2007) Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 41:615–626. doi:10.1080/10715760601169679

    Article  Google Scholar 

  • Kaul Z, Yaguchi T, Kaul SC, Wadhwa R (2006) Quantum dot-based protein imaging and functional significance of two mitochondrial chaperones in cellular senescence and carcinogenesis. In: Rattan S, Kristensen P, Clark BFC (eds) Understanding and Modulating Aging, vol 1067. Annals of the New York Academy of Sciences. Blackwell Publishing, Oxford, pp 469–473. doi:10.1196/annals.1354.067

    Google Scholar 

  • Khan MI, Mohammad A, Patil G, Naqvi SAH, Chauhan LKS, Ahmad I (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33:1477–1488. doi:10.1016/j.biomaterials.2011.10.080

    Article  Google Scholar 

  • Lalande C et al (2011) Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering. Eur Cells Mater 21:341–354

    Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  Google Scholar 

  • Lee JH et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422. doi:10.1038/nnano.2011.95

    Article  Google Scholar 

  • Li YF, Chen CY (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980. doi:10.1002/smll.201101059

    Article  Google Scholar 

  • Li N et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460. doi:10.1289/ehp.6000

    Article  Google Scholar 

  • Lunov O et al (2010) The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 31:5063–5071. doi:10.1016/j.biomaterials.2010.03.023

    Article  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M (2009) Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J Phys Chem C 113:9573–9580. doi:10.1021/jp9001516

    Article  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Shokrgozard MA, Milani AS, Hafeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloid Surf B-Biointerfaces 75:300–309. doi:10.1016/j.colsurfb.2009.08.044

    Article  Google Scholar 

  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752. doi:10.1038/nrm2239

    Article  Google Scholar 

  • Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2011) Nanoparticles: molecular targets and cell signalling. Arch Toxicol 85:733–741. doi:10.1007/s00204-010-0546-4

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397

    Article  Google Scholar 

  • Nicco C, Laurent A, Chereau C, Weill B, Batteux F (2005) Differential modulation of normal and tumor cell proliferation by reactive oxygen species. Biomed Pharmacother 59:169–174. doi:10.1016/j.biopha.2005.03.009

    Article  Google Scholar 

  • Ostrowski AD, Martin T, Conti J, Hurt I, Harthorn BH (2009) Nanotoxicology: characterizing the scientific literature, 2000-2007. J Nanopart Res 11:251–257. doi:10.1007/s11051-008-9579-5

    Article  Google Scholar 

  • Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96:2181–2196. doi:10.1002/jps.20874

    Article  Google Scholar 

  • Pan Y et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949. doi:10.1002/smll.200700378

    Article  Google Scholar 

  • Paunesku T et al (2007) Intracellular distribution of TiO2-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett 7:596–601. doi:10.1021/nl0624723

    Article  Google Scholar 

  • Qiu Y et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619. doi:10.1016/j.biomaterials.2010.06.051

    Article  Google Scholar 

  • Salnikov V, Lukyanenko YO, Frederick CA, Lederer WJ, Lukyanenko V (2007) Probing the outer mitochondrial membrane in cardiac mitochondria with nanoparticles. Biophys J 92:1058–1071. doi:10.1529/biophysj.106.094318

    Article  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. doi:10.1039/c1cs15188f

    Article  Google Scholar 

  • Shen CC, James SA, de Jonge MD, Turney TW, Wright PFA, Feltis BN (2013) Relating cytotoxicity, zinc ions, and reactive oxygen in zno nanoparticleexposed human immune cells. Toxicol Sci 136:120–130. doi:10.1093/toxsci/kft187

    Article  Google Scholar 

  • Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446–465. doi:10.1016/j.nantod.2011.08.001

    Article  Google Scholar 

  • Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8:E277–E283

    Article  Google Scholar 

  • Wahajuddin Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed 7:3445–3471. doi:10.2147/ijn.s30320

    Article  Google Scholar 

  • Wang J, Yi J (2008) Cancer cell killing via ROS To increase or decrease, that is the question. Cancer Biol Ther 7:1875–1884

    Article  Google Scholar 

  • Wu SYH, Tseng CL, Lin FH (2010) A newly developed Fe-doped calcium sulfide nanoparticles with magnetic property for cancer hyperthermia. J Nanopart Res 12:1173–1185. doi:10.1007/s11051-009-9734-7

    Article  Google Scholar 

  • Yamada Y, Harashima H (2008) Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev 60:1439–1462. doi:10.1016/j.addr.2008.04.016

    Article  Google Scholar 

  • Yamada Y et al (2008) MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta-Biomembr 1778:423–432. doi:10.1016/j.bbamem.2007.11.002

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate Prof. CH Wu and Ms. HM Chen from Taipei Medical University for TEM technical supporting and Dr. SJ Chen and Ms. YC Yang of the excellent technical assistance of Technology Commons, College of Life Science, National Taiwan University with TEM image. We also like to thank Dr. CT Chien and Ms. PU OuYang of the third core laboratory of the National Taiwan University Hospital for flow cytometer assistance.

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Huei Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, HC., Chen, CM., Hsieh, WY. et al. ROS-induced toxicity: exposure of 3T3, RAW264.7, and MCF7 cells to superparamagnetic iron oxide nanoparticles results in cell death by mitochondria-dependent apoptosis. J Nanopart Res 17, 71 (2015). https://doi.org/10.1007/s11051-015-2886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2886-8

Keywords

Navigation