Skip to main content
Log in

Efficient one-pot synthesis of monodisperse alkyl-terminated colloidal germanium nanocrystals

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An efficient one-pot method for fabricating alkyl-capped germanium nanocrystals (Ge NCs) is reported. Ge NCs with a size of 3.9 ± 0.5 nm, are formed by co-reduction of germanium tetrachloride in the presence of n-butyltrichlorogermane, producing NCs with butyl-terminated surfaces. The advantage of this method is that it allows rapid synthesis and functionalisation of NCs with minimal post-synthetic purification requirements. TEM imaging showed that the Ge NCs are monodisperse and highly crystalline, while EDX and SAED confirmed the chemical identity and crystal phase of the NCs. FTIR and XPS confirmed that the Ge NCs were well passivated, with some oxidation of the nanocrystal surface. Optical spectroscopy of the NCs showed a strong absorbance in the UV region and an excitation wavelength dependent photoluminescence in the UV/violet. Time resolved photoluminescence measurements showed the presence of two nanosecond lifetime components, consistent with recombination of photogenerated excitons at low lying energy states present at the nanocrystal surface. Photoluminescence quantum yields were determined to be 37 %, one of the highest values reported for organically terminated Ge NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bottrill M, Green M (2011) Some aspects of quantum dot toxicity. Chem Commun 47:7039–7050. doi:10.1039/c1cc10692a

    Article  Google Scholar 

  • Carolan D, Doyle H (2014) Size and emission color tuning in the solution phase synthesis of highly luminescent germanium nanocrystals. J Mater Chem C 2:3562–3568. doi:10.1039/C4TC00319E

    Article  Google Scholar 

  • Council (2003) Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment. www.eur-lex.europa.eu

  • Dasog M et al (2013) Chemical insight into the origin of red and blue photoluminescense arising from freestanding silicon nanocrystals. ACS Nano 7:2676–2685. doi:10.1021/nn4000644

    Article  Google Scholar 

  • Donega CdM (2011) Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 40:1512–1546. doi:10.1039/C0CS00055H

    Article  Google Scholar 

  • Fok E, Shih ML, Meldrum A, Veinot JGC (2004) Preparation of alkyl-surface functionalized germanium quantum dots via thermally initiated hydrogermylation. Chem Commun 4:386–387. doi:10.1039/b314887d

    Article  Google Scholar 

  • Gaponik N, Hickey SG, Dorfs D, Rogach AL, Eychmüller A (2010) Progress in the light emission of colloidal semiconductor nanocrystals. Small 6:1364–1378. doi:10.1002/smll.200902006

    Article  Google Scholar 

  • Gerung H, Bunge SD, Boyle TJ, Brinker CJ, Han SM (2005) Anhydrous solution synthesis of germanium nanocrystals from the germanium(II) precursor Ge [N(SiMe3)2]2. Chem Commun 14:1914–1916. doi:10.1039/b416066e

    Article  Google Scholar 

  • Ghosh B, Sakka Y, Shirahata N (2013) Efficient green-luminescent germanium nanocrystals. J Mater Chem 1:3747–3751. doi:10.1039/c3ta01246h

    Article  Google Scholar 

  • Henderson EJ, Seino M, Puzzo DP, Ozin GA (2010) Colloidally stable germanium nanocrystals for photonic applications. ACS Nano 4:7683–7691. doi:10.1021/nn102521k

    Article  Google Scholar 

  • Hoffman M, Veinot JGC (2012) Understanding the formation of elemental germanium by thermolysis of sol–gel derived organogermanium oxide polymers. Chem Mater 24:1283–1291. doi:10.1021/cm2035129

    Article  Google Scholar 

  • Holman ZC, Liu C-Y, Kortshagen UR (2010) Germanium and silicon nanocrystal thin-film field-effect transistors from solution. Nano Lett 10:2661–2666. doi:10.1021/nl101413d

    Article  Google Scholar 

  • Lee DC, Pietryga JM, Robel I, Werder DJ, Schaller RD, Klimov VI (2009) Colloidal synthesis of infrared-emitting germanium nanocrystals. J Am Chem Soc 131:3436–3437. doi:10.1021/ja809218s

    Article  Google Scholar 

  • Linehan K, Doyle H (2014) Size controlled synthesis of silicon nanocrystals using cationic surfactant templates. Small 10:584–590. doi:10.1002/smll.201301189

    Article  Google Scholar 

  • Lu XM, Korgel BA, Johnston KP (2005) Synthesis of germanium nanocrystals in high temperature supercritical CO2. Nanotechnology 16:S389–S394. doi:10.1088/0957-4484/16/7/012

    Article  Google Scholar 

  • Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. doi:10.1126/science.1104274

    Article  Google Scholar 

  • Muthuswamy E, Iskandar AS, Amador MM, Kauzlarich SM (2012) Facile synthesis of germanium nanoparticles with size control: microwave versus conventional heating. Chem Mater 25:1416–1422. doi:10.1021/cm302229b

    Article  Google Scholar 

  • Prabakar S, Shiohara A, Hanada S, Fujioka K, Yamamoto K, Tilley RD (2010) Size controlled synthesis of germanium nanocrystals by hydride reducing agents and their biological applications. Chem Mater 22:482–486. doi:10.1021/cm9030599

    Article  Google Scholar 

  • Rogach A (2008) Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications. Springer, Vienna

    Book  Google Scholar 

  • Ruddy DA, Johnson JC, Smith ER, Neale NR (2010) Size and bandgap control in the solution-phase synthesis of near-infrared-emitting germanium nanocrystals. ACS Nano 4:7459–7466. doi:10.1021/nn102728u

    Article  Google Scholar 

  • Schmid G (2010) Nanoparticles: from theory to application. Wiley, Weinheim

    Book  Google Scholar 

  • Shirahata N, Hirakawa D, Masuda Y, Sakka Y (2012) Size-dependent color tuning of efficiently luminescent germanium nanoparticles. Langmuir 29:7401–7410. doi:10.1021/la303482s

    Article  Google Scholar 

  • Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds. Wiley, New York

    Google Scholar 

  • Socrates G (1980) Infrared characteristic group frequencies. Wiley, Chichester

    Google Scholar 

  • Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2009) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458. doi:10.1021/cr900137k

    Article  Google Scholar 

  • Taylor BR, Kauzlarich SM, Delgado GR, Lee HWH (1999) Solution synthesis and characterization of quantum confined Ge nanoparticles. Chem Mater 11:2493–2500. doi:10.1021/cm990203q

    Article  Google Scholar 

  • Vaughn DD II, Schaak RE (2013) Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials. Chem Soc Rev 42:2861–2879. doi:10.1039/c2cs35364d

    Article  Google Scholar 

  • Wang J, Sun S, Peng F, Cao L, Sun L (2011) Efficient one-pot synthesis of highly photoluminescent alkyl-functionalised silicon nanocrystals. Chem Commun 47:4941–4943. doi:10.1039/c1cc10573f

    Article  Google Scholar 

  • Warner JH, Tilley RD (2006) Synthesis of water-soluble photoluminescent germanium nanocrystals. Nanotechnology 17:3745–3749. doi:10.1088/0957-4484/17/15/022

    Article  Google Scholar 

  • Wilcoxon JP, Provencio PP, Samara GA (2001) Synthesis and optical properties of colloidal germanium nanocrystals. Phys Rev B 64:035417. doi:10.1103/PhysRevB.64.035417

    Article  Google Scholar 

  • Wilcoxon JP, Provencio PP, Samara GA (2007) Synthesis and optical properties of colloidal germanium nanocrystals. Phys Rev B 76:199904. doi:10.1103/PhysRevB.76.199904

    Article  Google Scholar 

  • Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108:1067–1071. doi:10.1039/an9830801067

    Article  Google Scholar 

  • Winnick FM, Maysinger D (2013) Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res 46:672–680. doi:10.1021/ar3000585

    Article  Google Scholar 

  • Wu J, Sun Y, Zou R, Song G, Chen Z, Wang C, Hu J (2011) One-step aqueous solution synthesis of Ge nanocrystals from GeO2 powders. CrystEngComm 13:3674–3677. doi:10.1039/c1ce05191a

    Article  Google Scholar 

  • Xue D-J, Wang J-J, Wang Y-Q, Xin S, Guo Y-G, Wan L-J (2011) Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. Adv Mater 23:3704–3707. doi:10.1002/adma.201101436

    Article  Google Scholar 

  • Ye L et al (2012) A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nanotechnol 7:453–458. doi:10.1038/nnano.2012.74

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission under the FP7 Projects HYSENS (Grant agreement no. 263091) and CommonSense (Grant agreement no. 261809) and the Irish Higher Education Authority under the PRTLI programmes (Cycle 3 “Nanoscience” and Cycle 4 “INSPIRE”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Darragh Carolan or Hugh Doyle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carolan, D., Doyle, H. Efficient one-pot synthesis of monodisperse alkyl-terminated colloidal germanium nanocrystals. J Nanopart Res 16, 2721 (2014). https://doi.org/10.1007/s11051-014-2721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2721-7

Keywords

Navigation