Skip to main content

Advertisement

Log in

Continuous supercritical hydrothermal synthesis of iron oxide nanoparticle dispersions and their characterization

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Electrostatically stabilized iron oxide nanoparticle dispersions were synthesized using a continuous hydrothermal process at 673 K and 30 MPa. The average size of the primary particles was in the range 5–30 nm. The influence of the flow conditions as well as the composition of the starting material on the dispersion properties was investigated. A new Raman spectroscopic measurement setup was used for the characterization of the structure of the nanoparticles in dispersed form. The use of differential centrifugal sedimentation for the determination of the size distribution of the dispersed particles proved to be convenient and powerful to determine the influence of the investigated parameters on the dispersion properties. For certain compositions of the starting material and flow conditions using a conventional T-union, narrow size distributions concerning both primary particles and agglomerates could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. It is worth noting that the brownish red color was already observed at the time this unit was opened, directly after breaking the airtight packaging cover; there were no apparent color changes afterward. To minimize the exposure to air, the iron(II) acetate was kept in a glove box with an argon atmosphere, and before each experiment, a sufficient amount was bottled airtight in the glove box and was opened under normal atmosphere only once to prepare the aqueous solution.

References

  • Adschiri T, Arai K (2002) Hydrothermal synthesis of metal oxide nanoparticles under supercritical conditions, New York, pp 311–326

  • Adschiri T, Kanazawa K, Arai K (1992) Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water. J Am Ceram Soc 75(4):1019–22

    Article  Google Scholar 

  • Aizawa T, Masuda Y, Minami K, Kanakubo M, Nanjo H, Smith RL (2007) Direct observation of channel-tee mixing of high-temperature and high-pressure water. J Supercrit Fluids 43(2):222–227

    Article  Google Scholar 

  • Balmer JA, Le Cunff EC, Armes SP, Murray MW, Murray KA, Williams NSJ (2010) When does silica exchange occur between vinyl polymer-silica nanocomposite particles and sterically stabilized latexes? Langmuir 26(16):13662–13671

    Article  Google Scholar 

  • Beattie IR, Gilson TR (1970) The single-crystal Raman spectra of nearly opaque materials. Iron(III) oxide and chromium(III) oxide. J Chem Soc A 980–986

  • Bell NC, Minelli C, Tompkins J, Stevens MM, Shard AG (2012) Emerging techniques for submicrometer particle sizing applied to Stöber silica. Langmuir 28(29):10860–10872

    Article  Google Scholar 

  • Bersani D, Lottici PP, Montenero A (1999) Micro-Raman investigation of iron oxide films and powders produced by sol–gel syntheses. J Raman Spectrosc 30(5):355–360

    Article  Google Scholar 

  • Blood PJ, Denyer JP, Azzopardi BJ, Poliakoff M, Lester E (2004) A versatile flow visualisation technique for quantifying mixing in a binary system: application to continuous supercritical water hydrothermal synthesis (SWHS). Chem Eng Sci 59(14):2853–2861

    Article  Google Scholar 

  • Bremholm M, Felicissimo M, Iversen BB (2009) Time-resolved in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water. Angew Chem Int Ed 48(26):4788–4791

    Article  Google Scholar 

  • Cabanas A, Poliakoff M (2001) The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J Mater Chem 11:1408–1416

    Article  Google Scholar 

  • Chernyshova IV, Hochella MF Jr, Madden AS (2007) Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 9(14):1736–1750

    Article  Google Scholar 

  • Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet JF, Cohen-Jonathan S, Souce M, Marchais H, Dubois P (2005) Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130(10):1395–1403

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Das S, Hendry MJ (2011) Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem Geol 290(3–4):101–108

    Article  Google Scholar 

  • Daschner de Tercero M, Dresel A, Fehrenbacher U, Hirth T, Teipel U (2008) Kontinuierliche Herstellung von oxidischen Nanopartikeln in überkritischem Wasser. Fraunhofer IRB Verlag, Stuttgart

    Google Scholar 

  • Daschner de Tercero M, Bruns M, Türk M, Fehrenbacher U, Jennewein S, Barner L (2013) Continuous hydrothermal synthesis of in situ functionalized iron oxide nanoparticles: a general strategy to produce metal oxide nanoparticles with clickable anchors. Part Part Syst Char 30(3):229–234

    Article  Google Scholar 

  • El Mendili Y, Bardeau JF, Randrianantoandro N, Gourbil A, Greneche JM, Mercier AM, Grasset F (2011) New evidences of in situ laser irradiation effects on \(\gamma {\rm -}\text{Fe}_2\text{O}_3\) nanoparticles: a Raman spectroscopic study. J Raman Spectrosc 42(2):239–242

    Google Scholar 

  • Glasscock JA, Barnes PRF, Plumb IC, Bendavid A, Martin PJ (2008) Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films 516(8):1716–1724

    Article  Google Scholar 

  • Gruar RI, Tighe CJ, Darr JA (2013) Scaling-up a confined jet reactor for the continuous hydrothermal manufacture of nanomaterials. Ind Eng Chem Res 52(15):5270–5281

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  • Hakuta Y, Onai S, Terayama S, Adschiri T, Arai K (1998) Production of ultra-fine ceria particles by hydrothermal synthesis under supercritical conditions. J Mater Sci Lett 17(14):1211–1213

    Article  Google Scholar 

  • Hakuta Y, Haganuma T, Sue K, Adschiri T, Arai K (2003) Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water. Mater Res Bull 38(7):1257–1265

    Article  Google Scholar 

  • Hanesch M (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int 177(3):941–948

    Article  Google Scholar 

  • Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3(7):3794–3817

    Article  Google Scholar 

  • Hayashi H, Ueda A, Suino A, Hiro K, Hakuta Y (2009) Hydrothermal synthesis of yttrium stabilized \(\text{ZrO}_2\) nanoparticles in subcritical and supercritical water using a flow reaction system. J Solid State Chem 182(11):2985–2990

    Google Scholar 

  • Hayashi H, Noguchi T, Islam NM, Hakuta Y, Imai Y, Ueno N (2010a) Hydrothermal synthesis of \(\text{BaTiO}_3\) nanoparticles using a supercritical continuous flow reaction system. J Cryst Growth 312(12–13):1968–1972

    Google Scholar 

  • Hayashi H, Noguchi T, Islam NM, Hakuta Y, Imai Y, Ueno N (2010b) Hydrothermal synthesis of organic hybrid \(\text{BaTiO}_3\) nanoparticles using a supercritical continuous flow reaction system. J Cryst Growth 312(24):3613–3618

    Google Scholar 

  • Hayashi H, Suino A, Shimoyama K, Takesue M, Tooyama S Jr, RLS (2013) Continuous hydrothermal synthesis of \(\text{ZnGa}_2\text{O}_4{\rm :}\text{Mn}^{2+}\) nanoparticles at temperatures of 300–500 and pressures of 25–35 MPa. J Supercrit Fluids 77:1–6

  • Hellwege KH, Hellwege M (eds) (1962) Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Astronomie, Geophysik und Technik, 6. Auflage, II. Band Eigenschaften der Materien in ihren Aggregatzuständen, 8.Teil Optische Konstanten. Springer, Berlin

  • Hong SA, Kim SJ, Chung KY, Chun MS, Lee BG, Kim J (2013) Continuous synthesis of lithium iron phosphate (\(\text{LiFePO}_4\)) nanoparticles in supercritical water: effect of mixing tee. J Supercrit Fluids 73:70–79

    Google Scholar 

  • Jacintho GVM, Corio P, Rubim JC (2007) Surface-enhanced Raman spectra of magnetic nanoparticles adsorbed on a silver electrode. J Electroanal Chem 603(1):27–34

    Article  Google Scholar 

  • Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98(7):2549–2586

    Article  Google Scholar 

  • Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Inter 2(10):2804–2812

    Article  Google Scholar 

  • Kamiti M, Popadowski S, Remsen EE (2007) Advances in the characterization of particle size distributions of abrasive particles used in CMP. Mater Res Soc Symp Proc 991(0991—-C04–03):1–6

    Google Scholar 

  • Kawasaki SI, Sue K, Ookawara R, Wakashima Y, Suzuki A, Hakuta Y, Arai K (2010) Engineering study of continuous supercritical hydrothermal method using a T-shaped mixer: experimental synthesis of NiO nanoparticles and CFD simulation. J Supercrit Fluids 54(1):96–102

    Article  Google Scholar 

  • Lam UT, Mammucari R, Suzuki K, Foster NR (2008) Processing of iron oxide nanoparticles by supercritical fluids. Ind Eng Chem Res 47(3):599–614

    Article  Google Scholar 

  • Lester E, Blood P, Denyer J, Giddings D, Azzopardi B, Poliakoff M (2006) Reaction engineering: the supercritical water hydrothermal synthesis of nano-particles. J Supercrit Fluids 37(2):209–214

    Article  Google Scholar 

  • Longtin DR, Shettle EP, Hummel JR, Pryce JF (1988) A wind desert aerosol model: radiative properties. Sci Rep No 6, Air Force Geophys Lab, Air Force Syst Command, US Air Force

  • Lübbe M, Gigler AM, Stark RW, Moritz W (2010) Identification of iron oxide phases in thin films grown on \(\text{Al}_2\text{O}_3\) (0 0 0 1) by Raman spectroscopy and X-ray diffraction. Surf Sci 604(7–8):679–685

    Google Scholar 

  • Mae K, Suzuki A, Maki T, Hakuta Y, Sato H, Arai K (2007) A new micromixer with needle adjustment for instant mixing and heating under high pressure and high temperature. J Chem Eng Jpn 40(12):1101–1107

    Article  Google Scholar 

  • Mazzetti L, Thistlethwaite PJ (2002) Raman spectra and thermal transformations of ferrihydrite and schwertmannite. J Raman Spectrosc 33(2):104–111

    Article  Google Scholar 

  • Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB (2007) The structure of ferrihydrite, a nanocrystalline material. Science 316(5832):1726–1729

    Article  Google Scholar 

  • Middelkoop V, Boldrin P, Peel M, Buslaps T, Barnes P, Darr JA, Jacques SDM (2009) Imaging the inside of a continuous nanoceramic synthesizer under supercritical water conditions using high-energy synchrotron X-radiation. Chem Mat 21(12):2430–2435

    Article  Google Scholar 

  • Nadler M, Mahrholz T, Riedel U, Schilde C, Kwade A (2008) Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge. Carbon 46(11):1384–1392

    Article  Google Scholar 

  • Noguchi T, Matsui K, Islam NM, Hakuta Y, Hayashi H (2008) Rapid synthesis of \(\gamma\)-Al\(_2\)O\(_3\) nanoparticles in supercritical water by continuous hydrothermal flow reaction system. J Supercrit Fluids 46(2):129–136

    Article  Google Scholar 

  • Peak D, Regier T (2012) Direct observation of tetrahedrally coordinated Fe(III) in ferrihydrite. Environ Sci Technol 46(6):3163–3168

    Article  Google Scholar 

  • Reid E, Cooney R, Hendra P, Fleischmann M (1977) A Raman spectroscopic study of corrosion of lead electrodes in aqueous chloride media. J Electroanal Chem 80:405–408

    Article  Google Scholar 

  • Sasaki T, Ohara S, Naka T, Vejpravova J, Sechovsky V, Umetsu M, Takami S, Jeyadevan B, Adschiri T (2010) Continuous synthesis of fine \(\text{MgFe}_2\text{O}_4\) nanoparticles by supercritical hydrothermal reaction. J Supercrit Fluids 53(1–3):92–94

    Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Sousa MH, Tourinho FA, Rubim JC (2000) Use of Raman micro-spectroscopy in the characterization of \(\text{M}^{{\rm II}}\text{Fe}_2\text{O}_4\) (M = Fe, Zn) electric double layer ferrofluids. J Raman Spectrosc 31(3):185–191

  • Sue K, Sato T, Si Kawasaki, Takebayashi Y, Yoda S, Furuya T, Hiaki T (2010) Continuous hydrothermal synthesis of \(\text{Fe}_2\text{O}_3\) nanoparticles using a central collision-type micromixer for rapid and homogeneous nucleation at 673 K and 30 MPa. Ind Eng Chem Res 49(18):8841–8846

  • Sue K, Si Kawasaki, Suzuki M, Hakuta Y, Hayashi H, Arai K, Takebayashi Y, Yoda S, Furuya T (2011) Continuous hydrothermal synthesis of \(\text{Fe}_2\text{O}_3\), NiO, and CuO nanoparticles by superrapid heating using a T-type micro mixer at 673 K and 30 MPa. Chem Eng J 166(3):947–953

  • Thibeau RJ, Brown CW, Heidersbach RH (1978) Raman spectra of possible corrosion products of iron. Appl Spectrosc 32(6):532–535

    Article  Google Scholar 

  • Tyrsted C, Becker J, Hald P, Bremholm M, Pedersen JS, Chevallier J, Cerenius Y, Iversen SB, Iversen BB (2010) In-situ synchrotron radiation study of formation and growth of crystalline \(\text{Ce}_x\text{Zr}_{1-x}\text{O}_2\) nanoparticles synthesized in supercritical water. Chem Mater 22(5):1814–1820

  • Vangelista S, Mantovan R, Cocco S, Lamperti A, Salicio O, Fanciulli M (2012) Chemical vapor deposition growth of \(\text{Fe}_3\text{O}_4\) thin films and \(\text{Fe/Fe}_3\text{O}_4\) bi-layers for their integration in magnetic tunnel junctions. Thin Solid Films 520(14):4617–4621

  • Wang J, White WB, Adair JH (2005) Optical properties of hydrothermally synthesized hematite particulate pigments. J Am Ceram Soc 88(12):3449–3454

    Article  Google Scholar 

  • Zhou L, Yuan J, Wei Y (2011) Core-shell structural iron oxide hybrid nanoparticles: from controlled synthesis to biomedical applications. J Mater Chem 21(9):2823–2840

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of the Fraunhofer-Gesellschaft. The assistance of J. Graf, S. Unser, D. Rückert (building up and maintaining the high-pressure pilot plant), J. Schubert, F. Keilmann, C. Mönius, M. Zang (carrying out experimental runs), W. Send, C. Kübel (TEM), U. Förter-Barth, M. Herrmann (PXRD), L. Tercero Espinoza (assistance in programming with “R” for conveniently processing and visualizing data), and G. Irmer (Raman spectroscopy) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Daschner de Tercero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3913 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daschner de Tercero, M., Röder, C., Fehrenbacher, U. et al. Continuous supercritical hydrothermal synthesis of iron oxide nanoparticle dispersions and their characterization. J Nanopart Res 16, 2350 (2014). https://doi.org/10.1007/s11051-014-2350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2350-1

Keywords

Navigation