Skip to main content
Log in

Inhibition of the ROS-mediated cytotoxicity and genotoxicity of nano-TiO2 toward human keratinocyte cells by iron doping

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nano-TiO2 powders are widely used in sunscreen lotions as UV filters in combination with other substances. The activation of TiO2 by UV rays leads to the release of reactive oxygen species (ROS, e.g., hydroxyl radicals and singlet oxygen) which are potentially harmful. For this reason the TiO2 particles are generally coated with inert materials (e.g., silica or alumina) that inhibit such reactivity. Alternatively, the release of ROS may be inhibited by introducing in the TiO2 lattice doping elements. In the present study we report a new modification consisting in a wet impregnation of TiO2 with iron salts followed by a thermal treatment that results in an inhibition of the surface reactivity. The insertion of iron ions also gradually reduces the ability of photo-activated TiO2 to cleave DNA and proteins. At the same time, a clear inhibition of cyto- and geno-toxicity toward human (HaCaT) keratinocytes was observed. The data presented herein suggest the insertion of Fe3+ ions at the surface of nano-TiO2 as a promising strategy to reduce the photo-induced toxicity of nano-TiO2 powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abidi N, Cabrales L, Hequet E (2009) Functionalization of a cotton fabric surface with titania nanosols: applications for self-cleaning and UV-protection properties. ACS Appl Mater Interface 1:2141–2146. doi:10.1021/am900315t

    Article  Google Scholar 

  • Barker PJ, Branch A (2008) The interaction of modern sunscreen formulations with surface coatings. Prog Org Coat 62:313–320. doi:10.1016/j.porgcoat.2008.01.008

    Article  Google Scholar 

  • Bolis V, Busco C, Ciarletta M, Distasi C, Erriquez J, Fenoglio I, Livraghi S, Morel S (2012) Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system. J Colloid Interface Sci 369:28–39

    Article  Google Scholar 

  • Brezova V, Gabcova S, Dvoranova D, Stasko A (2005) Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study). J Photochem Photobiol B-Biol 79:121–134. doi:10.1016/j.jphotobiol.2004.12.006

    Article  Google Scholar 

  • Buchalska M, Kras G, Oszajca M, Lasocha W, Macyk W (2010) Singlet oxygen generation in the presence of titanium dioxide materials used as sunscreens in suntan lotions. J Photochem Photobiol A Chem 213:158–163. doi:10.1016/j.jphotochem.2010.05.019

    Article  Google Scholar 

  • Carlotti ME, Ugazio E, Sapino S, Fenoglio I, Greco G, Fubini B (2009) Role of particle coating in controlling skin damage photoinduced by titania nanoparticles. Free Radic Res 43:312–322. doi:10.1080/10715760802716633

    Article  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177. doi:10.1016/j.progsolidstchem.2004.08.001

    Article  Google Scholar 

  • Clennan EL, Pace A (2005) Advances in singlet oxygen chemistry. Tetrahedron 61:6665–6691. doi:10.1016/j.tet.2005.04.017

    Article  Google Scholar 

  • Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804. doi:10.1126/science.287.5459.1801

    Article  Google Scholar 

  • Colmenares JC, Aramendia MA, Marinas A, Marinas JM, Urbano FJ (2006) Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl Catal A Gen 306:120–127. doi:10.1016/j.apcata.2006.03.046

    Article  Google Scholar 

  • Corazzari I, Livraghi S, Ferrero S, Giamello E, Fubini B, Fenoglio I (2012) Inactivation of TiO2 nano-powders for the preparation of photo-stable sunscreens via carbon-based surface modification. J Mater Chem 22:19105–19112. doi:10.1039/c2jm32876c

    Article  Google Scholar 

  • Elghniji K, Atyaoui A, Livraghi S, Bousselmi L, Giamello E, Ksibi M (2012) Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination. J Alloys Compd 541:421–427. doi:10.1016/j.jallcom.2012.07.010

    Article  Google Scholar 

  • El-Sharkawy EA, Al-Shihry SS, Youssef AM (2007) Structural characterization and catalytic activities of titania supported iron(III) oxide catalysts: effect of Li+ impregnation. Mater Lett 61:2947–2951. doi:10.1016/j.matlet.2006.10.044

    Article  Google Scholar 

  • EPA/600/R-09/057F (2010) Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen national centre for environmental assessment. RTP Division Office of Research and Development, US Environmental Protection Agency

  • Fabrega C, Andreu T, Cabot A, Ramon Morante J (2010) Location and catalytic role of iron species in TiO2:Fe photocatalysts: an EPR study. J Photochem Photobiol A Chem 211:170–175. doi:10.1016/j.jphotochem.2010.03.003

    Article  Google Scholar 

  • Fenoglio I, Greco G, Livraghi S, Fubini B (2009) Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chem Eur J 15:4614–4621. doi:10.1002/chem.200802542

    Article  Google Scholar 

  • Fenoglio I, Fubini B, Ghibaudi EM, Turci F (2011) Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Adv Drug Deliv Rev 63:1186–1209. doi:10.1016/j.addr.2011.08.001

    Article  Google Scholar 

  • Fenoglio I, Ponti J, Alloa E, Ghiazza M, Corazzari I, Capomaccio R, Rembges D, Oliaro-Bosso S, Rossi F (2013) Singlet oxygen plays a key role in the toxicity and DNA damage of nanometric TiO2 to human keratinocytes. Nanoscale 5:6567–6576

    Article  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO(2) photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. doi:10.1016/j.surfrep.2008.10.001

    Article  Google Scholar 

  • Gedik CM, Boyle SP, Wood SG, Vaughan NJ, Collins AR (2002) Oxidative stress in humans: validation of biomarkers of DNA damage. Carcinogenesis 23:1441–1446. doi:10.1093/carcin/23.9.1441

    Article  Google Scholar 

  • George S, Pokhrel S, Ji Z, Henderson BL, Xia T, Li L, Zink JI, Nel AE, Maedler L (2011) Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc 133:11270–11278. doi:10.1021/ja202836s

    Article  Google Scholar 

  • Gerloff K, Fenoglio I, Carella E, Kolling J, Albrecht C, Boots A, Förster I, Schins R (2012) Distinctive toxicity of TiO2 rutile/anatase mixed phases nanoparticles on Caco-2 cells Chem. Res Toxicol 2012(25):646–655. doi:10.1021/tx200334k

    Article  Google Scholar 

  • Ghiazza M, Scherbart AM, Fenoglio I, Grendene F, Turci F, Martra G, Albrecht C, Schins RPF, Fubini B (2011) Surface iron inhibits quartz-induced cytotoxic and inflammatory responses in alveolar macrophages. Chem Res Toxicol 24:99–110. doi:10.1021/tx1003003

    Article  Google Scholar 

  • Ghiazza M, Carella E, Oliaro-Bosso S, Corazzari I, Viola V, Fenoglio I (2013) Predictive tests to evaluate oxidative potential of engineered nanomaterials. J Phys Conf Ser 429:012024. doi:10.1088/1742-6596/429/1/012024

    Article  Google Scholar 

  • Jaeger A, Weiss DG, Jonas L, Kriehuber R (2012) Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology 296:27–36. doi:10.1016/j.tox.2012.02.016

    Article  Google Scholar 

  • Jin Q, Fujishima M, Tada H (2011) Visible-light-active iron oxide-modified anatase titanium(IV) dioxide. J Phys Chem C 115:6478–6483. doi:10.1021/jp201131t

    Article  Google Scholar 

  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88–100

    Article  Google Scholar 

  • Kim JI, Lee JH, Choi DS, Won BM, Jung MY, Park J (2009) Kinetic study of the quenching reaction of singlet oxygen by common synthetic antioxidants (tert-butylhydroxyanisol, tert-di-butylhydroxytoluene, and tert-butylhydroquinone) as compared with alpha-tocopherol. J Food Sci 74:C362. doi:10.1111/j.1750-3841.2009.01160.x

    Article  Google Scholar 

  • Konaka R, Kasahara E, Dunlap WC, Yamamoto Y, Chien KC, Inoue M (1999) Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radic Biol Med 27:294–300. doi:10.1016/s0891-5849(99)00050-7

    Article  Google Scholar 

  • Landsiedel R, Ma-Hock L, Van Ravenzwaay B, Schulz M, Wiench K, Champ S, Schulte S, Wohlleben W, Oesch F (2010) Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology 4:364–381. doi:10.3109/17435390.2010.506694

    Article  Google Scholar 

  • Lee WA, Pernodet N, Li B, Lin CH, Hatchwell E, Rafailovich MH (2007) Multicomponent polymer coating to block photocatalytic activity of TiO(2) nanoparticles. Chem Commun 7:4815–4817. doi:10.1039/b709449c

    Article  Google Scholar 

  • Lund LG, Aust AE (1990) Iron mobilization from asbestos by chelators and ascorbic-acid. Arch Biochem Biophys 278:60–64

    Article  Google Scholar 

  • Lutterotti L, Matthies S, Wenk HR, Schultz AS, Richardson JW (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81:594–600. doi:10.1063/1.364220

    Article  Google Scholar 

  • Magdolenova Z, Bilanicova D, Pojana G, Fjellsbo LM, Hudecova A, Hasplova K, Marcomini A, Dusinska M (2012) Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. J Environ Monit 14:455–464. doi:10.1039/c2em10746e

    Article  Google Scholar 

  • Pal B, Sharon M, Nogami G (1999) Preparation and characterization of TiO(2)/Fe(2)O(3) binary mixed oxides and its photocatalytic properties. Mater Chem Phys 59:254–261. doi:10.1016/s0254-0584(99)00071-1

    Article  Google Scholar 

  • Park H-O, Yu M, Kang SK, Yang SI, Kim Y-J (2011) Comparison of cellular effects of titanium dioxide nanoparticles with different photocatalytic potential in human keratinocyte, HaCaT cells. Molec Cell Toxicol 7:67. doi:10.1007/s13273-011-0010-4

    Article  Google Scholar 

  • Pfannschmidt C, Langowski J (1998) Superhelix organization by DNA curvature as measured through site-specific labeling. J Mol Biol 275:601–611

    Google Scholar 

  • Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74. doi:10.1016/j.toxlet.2006.11.001

    Article  Google Scholar 

  • Radecka M, Rekas M, Trenczek-Zajac A, Zakrzewska K (2008) Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J Power Sources 181:46–55. doi:10.1016/j.jpowsour.2007.10.082

    Article  Google Scholar 

  • Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170:560–569. doi:10.1016/j.jhazmat.2009.05.064

    Article  Google Scholar 

  • Ricci A, Chretien MN, Maretti L, Scaiano JC (2003) TiO2-promoted mineralization of organic sunscreens in water suspension and sodium dodecyl sulfate micelles. Photochem Photobiol Sci 2:487–492. doi:10.1039/b212815b

    Article  Google Scholar 

  • Sacco MG, Pariselli F, Rembges D (2010) A model to evaluate biological effects from combined exposure to UVa/b radiation and toluene. Fresenius Environ Bull 19:330–338

    Google Scholar 

  • Sanders K, Degn LL, Mundy WR, Zucker RM, Dreher K, Zhao B, Roberts JE, Boyes WK (2012) In vitro phototoxicity and hazard identification of nano-scale titanium dioxide. Toxicol Appl Pharmacol 258:226–236. doi:10.1016/j.taap.2011.10.023

    Article  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Liu YP, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185. doi:10.1093/toxsci/kfj197

    Article  Google Scholar 

  • Shoonen MAA, Cohn CA, Roemer E, Laffers R, Simon SR, O’Riordan T (2006) Mineral-induced formation of reactive oxygen species. In: Shai N, Schoonen MAA (eds) Medical Mineralogy and Geochemistry. Reviews in Mineralogy and Geochemistry, vol 64. The Mineralogical Society of America, Chantilly, pp 179–222

    Google Scholar 

  • Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A (2011) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro 25:231–241. doi:10.1016/j.tiv.2010.11.008

    Article  Google Scholar 

  • Tiano L, Armeni T, Venditti E, Barucca G, Mincarelli L, Damiani E (2010) Modified TiO(2) particles differentially affect human skin fibroblasts exposed to UVA light. Free Radic Biol Med 49:408–415. doi:10.1016/j.freeradbiomed.2010.04.032

    Article  Google Scholar 

  • Turci F, Tomatis M, Lesci IG, Roveri N, Fubini B (2011) The iron-related molecular toxicity mechanism of synthetic asbestos nanofibres: a model study for high-aspect-ratio nanoparticles. Chem Eur J 17:350–358. doi:10.1002/chem.201001893

    Article  Google Scholar 

  • Wakefield G, Green M, Lipscomb S, Flutter B (2004) Modified titania nanomaterials for sunscreen applications: reducing free radical generation and DNA damage. Mater Sci Technol 20:985–988. doi:10.1179/016708304225019803

    Article  Google Scholar 

  • Wen L, Liu B, Zhao X, Nakata K, Murakami T, Fujishima A (2012) Synthesis, characterization, and photocatalysis of Fe-doped TiO2: a combined experimental and theoretical study. Int J Photoenergy. doi:10.1155/2012/368750

    Google Scholar 

  • Xue C, Wu J, Lan F, Liu W, Yang X, Zeng F, Xu H (2010) Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. J Nanosci Nanotechnol 10:8500–8507. doi:10.1166/jnn 2010.2682

    Article  Google Scholar 

  • Yaghoubi H, Taghavinia N, Alamdari EK (2010) Self cleaning TiO2 coating on polycarbonate: surface treatment, photocatalytic and nanomechanical properties. Surf Coat Technol 204:1562–1568. doi:10.1016/j.surfcoat.2009.09.085

    Article  Google Scholar 

  • Yu J, Xiang Q, Zhou M (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B Environ 90:595–602. doi:10.1016/j.apcatb.2009.04.021

    Article  Google Scholar 

  • Yu H, Irie H, Shimodaira Y, Hosogi Y, Kuroda Y, Miyauchi M, Hashimoto K (2010) An efficient visible-light-sensitive Fe(III)-grafted TiO2 photocatalyst. J Phys Chem C 114:16481–16487. doi:10.1021/jp1071956

    Article  Google Scholar 

Download references

Acknowledgment

This research has been carried out with the financial support of the University of Torino (Progetti di Ricerca finanziati ex 60 %- 2012) project title: “Integrated chemical tests for the evaluation of the oxidative potential of nanopowders” and by Regione Piemonte (Progetti di Ricerca Sanitaria Finalizzata 2009, project title ‘‘Inattivazione di polveri nanometriche di TiO2 per la prevenzione di patologie legate alla loro esposizione lavorativa ed ambientale’’). This work was also supported by the Work program Action 15024: Nanobiotechnologies of DG Joint Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jessica Ponti or Ivana Fenoglio.

Additional information

Mara Ghiazza and Elisa Alloa contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghiazza, M., Alloa, E., Oliaro-Bosso, S. et al. Inhibition of the ROS-mediated cytotoxicity and genotoxicity of nano-TiO2 toward human keratinocyte cells by iron doping. J Nanopart Res 16, 2263 (2014). https://doi.org/10.1007/s11051-014-2263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2263-z

Keywords

Navigation