Skip to main content
Log in

α-Alkyl cysteine-coated gold nanoparticles: effect of Cα-tetrasubstitution on colloidal stability

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, we report the synthesis of new α-methyl l-cysteine-coated gold nanoparticles (average core diameter ca. 3 nm) and the remarkable enhancement of their aqueous stability against aggregation in comparison with the nanoparticles capped with unmodified l-cysteine under the same experimental conditions. Atomistic molecular dynamics simulations of model gold surfaces capped with l-cysteine or α-methyl l-cysteine revealed important differences in both the organization of the amino acids with respect to the surface and their spontaneous assembly with neighboring molecules. These differences, which are originated by the introduction of the α-methyl group in the amino acid, could be associated with the observed increase in stability and dispersibility of the composites in aqueous solutions at different pH values and ionic concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abraham A, Mihaliuk E, Kumar B, Legleiter J, Gullion T (2010) Solid-state NMR study of cysteine on gold nanoparticles. J Phys Chem C 114(42):18109–18114

    Article  Google Scholar 

  • Alemán C, Jiménez AI, Cativiela C, Pérez JJ, Casanovas J (2002) Influence of the phenyl side chain on the conformation of cyclopropane analogues of phenylalanine. J Phys Chem B 106(45):11849–11858

    Article  Google Scholar 

  • Aryal S, Remant BKC, Dharmaraj N, Bhattarai N, Kim CH, Kim HY (2006) Spectroscopic identification of S Au interaction in cysteine capped gold nanoparticles. Spectrochim Acta A 63(1):160–163

    Article  Google Scholar 

  • Barnard AS, Lin XM, Curtiss LA (2005) Equilibrium morphology of face-centered cubic gold nanoparticles >3 nm and the shape changes induced by temperature. J Phys Chem B 109(51):24465–24472

    Article  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  Google Scholar 

  • Carr J, Wang H, Abraham A, Gullion T (2012) l-Cysteine interactions with Au55 nanoparticle. J Phys Chem C 116(49):25816–25823

    Article  Google Scholar 

  • Casanovas J, Revilla-López G, Crisma M, Toniolo C, Alemán C (2012) Factors governing the conformational tendencies of C(α)-ethylated α-amino acids: chirality and side-chain size effects. J Phys Chem B 116(45):13297–13307

    Article  Google Scholar 

  • Chai F, Wang C, Wang T, Ma Z, Su Z (2010) l-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Nanotechnology 21(2):025501

    Article  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CL, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197

    Article  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  Google Scholar 

  • De la Fuente J, Berry CC, Riehle MO, Curtis ASG (2006) Nanoparticle targeting at cells. Langmuir 22(7):3286–3293

    Article  Google Scholar 

  • Di J, Peng S, Shen C, Gao Y, Tu Y (2007) One-step method embedding superoxide dismutase and gold nanoparticles in silica sol–gel network in the presence of cysteine for construction of third-generation biosensor. Biosens Bioelectron 23(1):88–94

    Article  Google Scholar 

  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779

    Article  Google Scholar 

  • Dua S, Wanga X, Suna X, Lia Q (2012) Amperometric immunosensor based on l-cysteine/gold colloidal nanoparticles for carbofuran detection. Anal Lett 45(10):1230–1241

    Article  Google Scholar 

  • Häkkinen H (2012) The gold–sulfur interface at the nanoscale. Nat Chem 4(6):443–455

    Article  Google Scholar 

  • Hayat MA (1991) Colloidal gold: principles, methods, and applications. Academic Press, San Diego

    Google Scholar 

  • Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1):17–30

    Article  Google Scholar 

  • Iori F, Di Felice R, Molinari E, Corni S (2009) GoIP: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J Comput Chem 30(9):1465–1476

    Article  Google Scholar 

  • Jadhav SA (2012) Functional self-assembled monolayers (SAMs) of organic compounds on gold nanoparticles. J Mater Chem 22(13):5894–5899

    Article  Google Scholar 

  • Jaramillo TF, Baeck SH, Cuenya BR, McFarland EW (2003) Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J Am Chem Soc 125(24):7148–7149

    Article  Google Scholar 

  • Jeanguenat A, Seebach D (1991) Stereoselective chain elongation at C-3 of cysteine through 2,3-dihydrothiazoles, without racemization. Preparation of 2-amino-5-hydroxy-3-mercaptoalkanoic acid derivatives. J Chem Soc Perking Trans 1(10):2291–2298

    Article  Google Scholar 

  • Jing C, Fang Y (2007) Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of l-cysteine on gold/silver nanoparticles. Chem Phys 332(1):27–32

    Article  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  Google Scholar 

  • Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111(1):1–35

    Article  Google Scholar 

  • Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19(15):6277–6282

    Article  Google Scholar 

  • Lohse SE, Murphy CJ (2012) Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 134(38):15607–15620

    Article  Google Scholar 

  • Mahon E, Salvati A, Bombelli FB, Lynch I, Dawson KA (2012) Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J Control Release 161(2):164–174

    Article  Google Scholar 

  • Majzik A, Patakfalvi R, Hornok V, Défány I (2009) Growing and stability of gold nanoparticles and their functionalization by cysteine. Gold Bull 42(2):113–123

    Article  Google Scholar 

  • Mocanu A, Cernica I, Tomoaia G, Bobos L-D, Horovitz O, Tomoaia-Cotisel M (2009) Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids Surf A Physicochem Eng Aspects 338(1–3):93–101

    Article  Google Scholar 

  • Mulqueen GC, Pattenden G, Whiting DA (1993) Synthesis of the thiazoline-based siderophore (S)-desferrithiocin. Tetrahedron 49(24):5359–5364

    Article  Google Scholar 

  • Naka K, Itoh H, Tampo Y, Chujo Y (2003) Effect of gold nanoparticles as a support for the oligomerization of l-cysteine in an aqueous solution. Langmuir 19(13):5546–5549

    Article  Google Scholar 

  • Pattenden G, Thom SM, Jones MF (1993) Enantioselective Synthesis of 2-alkyl substituted cysteines. Tetrahedron 49(10):2131–2138

    Article  Google Scholar 

  • Pensa E, Cortés E, Corthey G, Carro P, Vericat C, Fonticelli MH, Benítez G, Rubert AA, Savarezza RC (2012) The chemistry of the sulfur–gold interface: in search of a unified model. Acc Chem Res 45(8):1183–1192

    Article  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  Google Scholar 

  • Prats-Alfonso E, Albericio F (2011) Functionalization of gold surfaces: recent developments and applications. J Mater Sci 46(24):7643–7648

    Article  Google Scholar 

  • Rajesh S, Arivudainambi USE, Rajasingh S, Rajendran A, Kotamraju S, Karunakaran C (2010) Superoxide anion radical biosensor using self-assembled cysteine monolayer on gold nanoparticles in polypyrrole matrix facilitated electron transfer in Cu, ZnSOD. Sensor Lett 8(4):613–621

    Article  Google Scholar 

  • Rautaray D, Kumar A, Reddy S, Sainkar SR, Sastry M (2002) Morphology of BaSO4 crystals grown on templates of varying dimensionality: the case of cysteine-capped gold nanoparticles (0-D), DNA (1-D), and lipid bilayer stacks (2-D). Cryst Growth Des 2(3):197–203

    Article  Google Scholar 

  • Řezanka P, Řezanková H, Matějka P, Král V (2010) The chemometric analysis of UV–visible spectra as a new approach to the study of the NaCl influence on aggregation of cysteine-capped gold nanoparticles. Colloid Surf A 364(1–3):94–98

    Article  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  Google Scholar 

  • Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):1384–13851

    Article  Google Scholar 

  • Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B Condens Mater Phys 5(12):4709–4714

    Article  Google Scholar 

  • Srisombat L, Jamison AC, Lee TR (2011) Stability: a key issue for self-assembled monolayers on gold as thin-film coatings and nanoparticle protectants. Colloid Surf A 390(1–3):1–19

    Article  Google Scholar 

  • Templeton AC, Chen S, Gross SM, Murray RW (1999) Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers. Langmuir 15(1):66–76

    Article  Google Scholar 

  • Toukmaji A, Sagui C, Board J, Darden T (2000) Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. J Chem Phys 113(24):10913–10927

    Article  Google Scholar 

  • Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21(12):1049–1074

    Article  Google Scholar 

  • Wang G, Huang H, Zhang G, Zhang X, Fang B, Wang L (2010) Gold nanoparticles/l-cysteine/graphene composite based immobilization strategy for an electrochemical immunosensor. Anal Methods 2(11):1692–1697

    Article  Google Scholar 

  • Xue Y, Zhao H, Wu Z, Li X, He Y, Yuan Z (2011) Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and l-cysteine. Analyst 136(18):3725–3730

    Article  Google Scholar 

  • Yang W, Gooding JJ, He Z, Li Q, Chen G (2007) Fast colorimetric detection of copper ions using l-cysteine functionalized gold nanoparticles. J Nanosci Nanotechnol 7(2):712–716

    Google Scholar 

  • Yang G, Yuan R, Chai Y-Q (2008) A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/l-cysteine/gold colloid/nanoparticles Pt–chitosan composite film-modified platinum disk electrode. Colloids Suf B Biointerfaces 61(1):93–100

    Article  Google Scholar 

  • Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331(2):251–262

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministerio de Ciencia e Innovación–FEDER (grants CTQ2010-17436, IPT-2011-0860-60000, MAT2012-34498 and MAT2011-26851-C02-01), ERC-Starting Grant NANOPUZZLE, Gobierno de Aragón–FSE (Research Group E40 and E93) and Generalitat de Catalunya (Research group 2009 SGR 925 and XRQTC) for financial support. I. O. thanks The Spanish National Research Council (CSIC) for a postdoctoral contract. Support for the research of C.A. was received through the prize “ICREA Academia” for excellence in research funded by the Generalitat de Catalunya. J. M. F. thanks ARAID for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Díaz Díaz.

Additional information

Iñaki Osante and Ester Polo have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 30769 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osante, I., Polo, E., Revilla-López, G. et al. α-Alkyl cysteine-coated gold nanoparticles: effect of Cα-tetrasubstitution on colloidal stability. J Nanopart Res 16, 2224 (2014). https://doi.org/10.1007/s11051-013-2224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2224-y

Keywords

Navigation