Skip to main content
Log in

Functionalization of magnetic nanoparticles with high-binding capacity for affinity separation of therapeutic proteins

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles with immobilized metal ligands were prepared for the separation of antibody fragments. First, iron oxide nanoparticles were produced in a solvothermal synthesis using triethylene glycol as solvent and iron(III) acetylacetonate as organic precursor. Via functionalization of the particles with priorly reacted 3-glycidoxypropyltrimethoxysilane and N α,N α-bis(carboxymethyl)-l-lysine (NTA), and charging with Ni2+, magnetic affinity adsorbents were obtained. The particles were applied to separate a His-tagged antibody fragment from a heterogeneous protein mixture of a microbial cultivation supernatant. Binding properties and specificity for purification of the target product ABF D1.3 scFv were optimized regarding the GNTA concentration and were found superior as compared to commercially available systems. A molar ratio of 1:2 Fe2O3:GNTA was most beneficial for the specific purification of the antibody fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anspach FB (1994) Silica-based metal chelate affinity sorbents. I. Preparation and characterization of iminodiacetic acid affinity sorbents prepared via different immobilization techniques. J Chromatogr A 672(1–2):35–49. doi:10.1016/0021-9673(94)80592-X

    Article  Google Scholar 

  • Arias JL, Lopez-Viota M, Ruiz MA, Lopez-Viota J, Delgado AV (2007) Development of carbonyl iron/ethylcellulose core/shell nanoparticles for biomedical applications. Int J Pharm 339(12):237–245. doi:10.1016/j.ijpharm.2007.02.028

    Article  Google Scholar 

  • Bucak S, Jones DA, Laibinis PE, Hatton TA (2003) Protein separations using colloidal magnetic nanoparticles. Biotechnol Prog 19(2):477–484. doi:10.1021/bp0200853

    Article  Google Scholar 

  • Chang J, Kang K, Choi J, Jeong Y (2008) High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles. Superlattices Microstruct 44(4–5):442–448. doi:10.1016/j.spmi.2007.12.006

    Article  Google Scholar 

  • Cristancho CAM, David F, Franco-Lara E, Seidel-Morgenstern A (2013) Discontinuous and continuous purification of single-chain antibody fragments using immobilized metal ion affinity chromatography. J Biotechnol 163(2):233–242. doi:10.1016/j.jbiotec.2012.08.022

    Article  Google Scholar 

  • Csetneki I, Faix MK, Szilagyi A, Kovacs AL, Nemeth Z, Zrinyi M (2004) Preparation of magnetic polystyrene latex via the miniemulsion polymerization technique. J Polym Sci A Polym Chem 42(19):4802–4808. doi:10.1002/pola.20300

    Article  Google Scholar 

  • David F, Steinwand M, Hust M, Bohle K, Ross A, Dübel S, Franco-Lara E (2011) Antibody production in Bacillus megaterium: strategies and physiological implications of scaling from microtiter plates to industrial bioreactors. Biotechnol J 6(12):1516–1531. doi:10.1002/biot.201000417

    Article  Google Scholar 

  • De Faria DLA, Venancio Silva S, De Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28(11):873–878. doi:10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B

    Google Scholar 

  • Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1(2):157–168. doi:10.2217/17435889.1.2.157

    Article  Google Scholar 

  • Durdureanu-Angheluta A, Dascalu A, Fifere A, Coroaba A, Pricop L, Chiriac H, Tura V, Pinteala M, Simionescu BC (2012) Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface. J Magn Magn Mater 324(9):1679–1689. doi:10.1016/j.jmmm.2011.11.062

    Article  Google Scholar 

  • Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7(1):1–37. doi:10.1007/BF03245856

    Article  Google Scholar 

  • Frenzel A, Fröde D, Meyer T, Schirrmann T, Hust M (2012) Generating recombinant antibodies for research, diagnostics and therapy using phage display. Curr Biotechnol 1:31–41. doi:10.2174/2211550111201010033

    Article  Google Scholar 

  • Ghosh Chaudhuri R, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433. doi:10.1021/cr100449n

    Article  Google Scholar 

  • Grabs IM, Bradtmöller C, Menzel D, Garnweitner G. (2012) Formation mechanisms of iron oxide nanoparticles in different nonaqueous media. Cryst Growth Des 12(3):1469–1475. doi:10.1021/cg201563h

    Article  Google Scholar 

  • Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36(12):1564–1574. doi:10.1002/sia.1984

    Article  Google Scholar 

  • Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949. doi:10.1039/B514130C

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  • Hainfeld JF, Liu W, Halsey CMR, Freimuth P, Powell RD (1999) Ni-NTA gold clusters target His-tagged proteins. J Struct Biol 127(2):185–198. doi:10.1006/jsbi.1999.4149

    Article  Google Scholar 

  • Heyd M, Franzreb M, Berensmeier S (2011) Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa. Biotechnol Prog 27(3):706–716. doi:10.1002/btpr.607

    Article  Google Scholar 

  • Käppler T, Cerff M, Ottow K, Hobley T, Posten C (2009) In situ magnetic separation for extracellular protein production. Biotechnol Bioeng 102(2):535–545. doi:10.1002/bit.22064

    Article  Google Scholar 

  • Khurshid H, Kim SH, Bonder MJ, Colak L, Ali B, Shah SI, Kiick KL, Hadjipanayis GC (2009) Development of heparin-coated magnetic nanoparticles for targeted drug delivery applications. J Appl Phys 105(7):07B308. doi:10.1063/1.3068018

    Article  Google Scholar 

  • Ki-Chul K, Eung-Kwon K, Jae-One L, Young-Sung K (2006) Characterization of magnetic nanoparticles synthesized by sonomechanical method. In: Nanotechnology Materials and Devices Conference, 2006. NMDC 2006. IEEE, vol 1, pp 600–601. doi:10.1109/NMDC.2006.4388922

  • Lee IS, Lee N, Park J, Kim BH, Yi YW, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc 128(33):10,658–10,659. doi:10.1021/ja063177n

    Article  Google Scholar 

  • Lee S, Ahn C, Lee J, Lee J, Chang J (2012) Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles. Nanoscale Res Lett 7:279. doi:10.1186/1556-276X-7-279

    Article  Google Scholar 

  • Low D, O’Leary R, Pujar NS (2007) Future of antibody purification. J Chromatogr B 848(1):48–63. doi:10.1016/j.jchromb.2006.10.033

    Article  Google Scholar 

  • McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49(11):1521–1529. doi:10.1002/sia.1984

    Article  Google Scholar 

  • Minati L, Micheli V, Rossi B, Migliaresi C, Dalbosco L, Bao G, Hou S, Speranza G (2011) Application of factor analysis to XPS valence band of superparamagnetic iron oxide nanoparticles. Appl Surf Sci 257(24):10,863–10,868. doi:10.1016/j.apsusc.2011.07.123

    Article  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175. doi:10.1039/b402025a

    Article  Google Scholar 

  • Palecek E, Fojta M (2007) Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta 74(3):276–290. doi:10.1016/j.talanta.2007.08.020

    Article  Google Scholar 

  • Roque A, Cecilia A, Lowe CR, Taipa MA (2004) Antibodies and genetically engineered related molecules: production and purification. Biotechnol Prog 20(3):639–654. doi:10.1021/bp030070k

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. doi:10.1038/nmeth.2089

    Article  Google Scholar 

  • Shieh DB, Su CH, Chang FY, Wu YN, Su WC, Hwu J, Chen JH, Yeh CS (2006) Aqueous nickel-nitrilotriacetate modified Fe3O4–NH +3 nanoparticles for protein purification and cell targeting. Nanotechnology 17(16):4174–4182. doi:10.1088/0957-4484/17/16/030

    Article  Google Scholar 

  • Sopaci S, Simsek I, Tural B, Volkan M, Demir A (2009) Carboligation reactions with benzaldehyde lyase immobilized on superparamagnetic solid support. Org Biomol Chem 7(8):1658–1664. doi:10.1039/b819722a

    Article  Google Scholar 

  • Suzer S, Baer DR, Engelhard MH (2010) Analysis of Fe nanoparticles using XPS measurements under d.c. or pulsed-voltage bias. Surf Interface Anal 42(6–7):859–862. doi:10.1002/sia.3260

    Article  Google Scholar 

  • Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126(32):9938–9939. doi:10.1021/ja0464802

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. G. Goya and G. Antorrena Pardo, University of Zaragoza, Spain, for the XPS analysis, and D. Menzel, Institute for Condensed Matter Physics, TU Braunschweig, for the Raman analysis. R. Pitschke and Prof. M. Antonietti, Max Planck Institute for Colloids and Interfaces, Potsdam, are gratefully acknowledged for the TEM measurements. We also thank Miriam Steinwand and Prof. Stefan Dübel, Institute of Biochemistry, Biotechnology and Bioinformatics, for provision of the D1.3 scFv antibody standard. This work was kindly supported by the German Research Foundation via the Collaborative Research Center (SFB 578-From Gene to Product) at TU Braunschweig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Garnweitner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 880 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masthoff, IC., David, F., Wittmann, C. et al. Functionalization of magnetic nanoparticles with high-binding capacity for affinity separation of therapeutic proteins. J Nanopart Res 16, 2164 (2014). https://doi.org/10.1007/s11051-013-2164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2164-6

Keywords

Navigation