Skip to main content
Log in

Spherically symmetric nanoparticle melting with a variable phase change temperature

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, we analyse the melting of a spherically symmetric nanoparticle, using a continuum model which is valid down to a few nanometres. Melting point depression is accounted for by a generalised Gibbs–Thomson relation. The system of governing equations involves heat equations in the liquid and solid, a Stefan condition to determine the position of the melt boundary and the Gibbs-Thomson equation. This system is simplified systematically to a pair of first-order ordinary differential equations. Comparison with the solution of the full system shows excellent agreement. The reduced system highlights the effects that dominate the melting process and specifically that rapid melting is expected in the final stages, as the radius tends to zero. The results agree qualitatively with limited available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abragall P, Nguyen NT (2009) Nanofluidics, 1st edn. Artech House,London

    Google Scholar 

  • Ahmad F, Pandey A, Herzog A, Rose J, Gerba C, Hashsham S (2012) Environmental applications and potential health implications of quantum dots. J Nanopart Res 14(1038):doi:10.1007/s11,051-012-1038-7

  • Alexiades V, Solomon A (1993) Mathematical modelling of rfreezing and melting processes, 1st edn. Hemisphere Publishing Corporation, Washington

    Google Scholar 

  • Bergese P, Colombo I, Gervasoni D, Depero L (2004) Melting of nanostructured drugs embedded into a polymeric matrix. J Phys Chem B 108:15,488–15,493

    Article  CAS  Google Scholar 

  • Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13(6):2287–2297

    Article  CAS  Google Scholar 

  • David TB, Lereah Y, Deutscher G, Kofman R, Cheyssac P (1995) Solid-liquid transition in ultra-fine lead particles. Philos Mag A 71(5):1135–1143

    Article  CAS  Google Scholar 

  • Davis S (2001) Theory of Solidification. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Debenedetti P (1996) Metastable liquids, concepts and principles. Princeton University Press, Princeton

    Google Scholar 

  • Evans JD, King JR (2000) Asymptotic results for the Stefan problem with kinetic undercooling. QJl Mech App Math 53:449–473

    Article  Google Scholar 

  • Faivre C, Bellet D, Dolino G (1999) Phase transitions of fluids confined in porous silicon: A differential calorimetry investigation. Eur Phys J B 7(1):19–36

    CAS  Google Scholar 

  • Ghosh P, Han G, De M, Kim C, Rotello V (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  CAS  Google Scholar 

  • Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90

    Article  Google Scholar 

  • Guisbiers G, Kazan M, Overschelde OV, Wautelet M, Pereira S (2008) Mechanical and thermal properties of metallic and semiconductive nanostructures. J Phys Chem C 112:4097–4103

    Article  CAS  Google Scholar 

  • Gulseren O, Ercolessi F, Tosatti E (1995) Premelting of thin wires. Phys Rev B 51(11):7377–7380

    Article  CAS  Google Scholar 

  • Hill JM (1987) One-Dimensional Stefan problems: an introduction, 1st edn. Longman Scientific & Technical, New York

    Google Scholar 

  • Hinch E (2000) Perturbation methods. Cambridge University Press, Cambridge

    Google Scholar 

  • Karmakar S, Kumar S, Rinaldi R, Maruccio G (2011) Nano-electronics and spintronics with nanoparticles. J Phys: Conf Ser 292(012002):doi:10.1088/1742-6596/292/1/012,002

  • Kofman R, Cheyssac P, Lereah Y, Stella A (1999) Melting of clusters approaching 0D. Eur Phys J D 9(1–4):441–444

    Article  CAS  Google Scholar 

  • Koga K, Ikeshoj T, Sugawara KI (2004) Size- and temperature-dependent structural transitions in gold nanoparticles. Phys Rev Lett 92(11):doi:10.1103/PhysRevLett.92.115,507

  • Kuo CL, Clancy P (2005) Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters. J Phys Chem B 109:13,743–13,754

    Article  CAS  Google Scholar 

  • Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys Rev Lett 77(1):99–102

    Article  CAS  Google Scholar 

  • Liu X, Yangb P, Jiang Q (2007) Size effect on melting temperature of nanostructured drugs. Mat Chem Phys 103(103):1–4

    Google Scholar 

  • McCue SW, King JR, Riley DS (2003) Extinction behaviour for two-dimensional inward-solidification problems. Proceedings of the Royal Society A 459(2032):977–999

  • McCue SW, Wu B, Hill JM (2009) Micro/nanoparticle melting with spherical symmetry and surface tension. IMA J Appl Math 74:439–457

    Article  Google Scholar 

  • Mitchell S, Vynnycky M (2009) Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems. Appl Math Comput 215(4):1609–1621

    Article  Google Scholar 

  • Myers TG, Mitchell SL, Font F (2012) Energy conservation in the one-phase supercooled Stefan problem. Int Comm Heat Mass Trans 39:1522–1525

    Google Scholar 

  • Nanda K (2009) Size dependent melting of nanoparticles. Pramana J Phys 72(4):617–628

    Article  CAS  Google Scholar 

  • Nguyen NT, Werely S (2006) Fundamentals and applications of microfluidics, 1st edn. Artech House, Boston

    Google Scholar 

  • Petrov O, Furó I (2006) Curvature-dependent metastability of the solid phase and the freezing-melting hysteresis in pores. Phys Rev E 73:011,608

    Article  Google Scholar 

  • Plech A, Kotaidis V, Grésillon S, Dahmen C, von Plessen G (2004) Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. Phys Rev B 70(19):195,423

    Article  Google Scholar 

  • Rana S, Bajaj A, Mout R, Rotello V (2012) Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 64:200–216

    Article  CAS  Google Scholar 

  • Riley DS, Smith FT, Poots G (1974) The inward solidification of spheres and circular cylinders. Int J Heat Mass Trans 17:1507–1516

    Article  Google Scholar 

  • Ruan C, Murooka Y, Raman RK, Murdick RA (2007) Dynamics of size-selected gold nanoparticles studied by ultrafast electron nanocrystallography. Nano Lett 7(5):1290–1296

    Article  CAS  Google Scholar 

  • Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotech 2(3)

  • Samsonov V, Bazulev A, Sdobnyakovy N (2003) On applicability of Gibbs thermodynamics to nanoparticles. Central Eur J Phys 1(3):474–484

    Article  CAS  Google Scholar 

  • Sheng HW (1996) Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices. Phil Mag Lett 73(4):179–186

    Article  CAS  Google Scholar 

  • Sheng HW, Ren G, Peng LM, Hu ZQ, Lu K (1996) Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices. Philos Mag Lett 73(4):179–186

    Article  CAS  Google Scholar 

  • Shim JH, Lee BJ, Cho YW (2002) Thermal stability of unsupported gold nanoparticle: a molecular dynamics study. Surf Sci 512:262–268

    Article  CAS  Google Scholar 

  • Travis KP, Todd BD, Evans DJ (1997) Departure from navier-stokes hydrodynamics in confined liquids. Phys Rev E 55(4):4288–4295

    Article  CAS  Google Scholar 

  • Volz S, Saulnier JB, Lallemand M, Perrin B, Depondt P (1996) Transient fourier-law deviation by molecular dynamics in solid argon. Phys Rev B 54(1):340–347

    Article  CAS  Google Scholar 

  • Wu B, McCue SW, Tillman P, Hill JM (2009) Single phase limit for melting nanoparticles. Appl Math Model 33(5):2349–2367

    Article  Google Scholar 

  • Wu B, Tillman P, McCue SW, Hill JM (2009) Nanoparticle melting as a Stefan moving boundary problem. J Nanosci Nanotechnol 9(2):885–888

    Article  CAS  Google Scholar 

  • Wu T, Liaw HC, Chen YZ (2002) Thermal effect of surface tension on the inward solidication of spheres. International J Heat Mass Trans 45(10):2055–2065

    Article  Google Scholar 

  • Zhong J, Zhang LH, Jin ZH, Sui ML, Lu K (2001) Superheating of Ag nanoparticles embedded in Ni matrix. Acta Mater 49(15):2897–2904

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research of TGM was supported by a Marie Curie International Reintegration Grant Industrial applications of moving boundary problems Grant No. FP7-256417, and Ministerio de Ciencia e Innovación Grant MTM2011-23789. FF acknowledges the support of a Centre de Recerca Matemàtica PhD Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Myers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Font, F., Myers, T.G. Spherically symmetric nanoparticle melting with a variable phase change temperature. J Nanopart Res 15, 2086 (2013). https://doi.org/10.1007/s11051-013-2086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2086-3

Keywords

Navigation