Skip to main content
Log in

Composite polyester membranes with embedded dendrimer hosts and bimetallic Fe/Ni nanoparticles: synthesis, characterisation and application to water treatment

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study describes the preparation, characterization and evaluation of new composite membranes with embedded dendrimer hosts and Fe/Ni nanoparticles. These new reactive membranes consist of films of cyclodextrin–poly(propyleneimine) dendrimers (β-CD–PPI) that are deposited onto commercial polysulfone microporous supports and crosslinked with trimesoyl chloride (TMC). The membranes were subsequently loaded with Fe/Ni nanoparticles and evaluated as separation/reactive media in aqueous solutions using 2,4,6-trichlorophenol as model pollutant. The morphology and physicochemical properties of the composite membranes were characterised using high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy and measurements of contact angle, water intake, porosity and water permeability. The sorption capacity and catalytic activity of the membranes were evaluated using ion chromatography, atmospheric pressure chemical ionisation-mass spectrometry and UV–Vis spectroscopy (UV–Vis). The sizes of the embedded Fe/Ni nanoparticles in the membranes ranged from 40 to 66 nm as confirmed by HR-TEM. The reaction rates for the dechlorination of 2,4,6-trichlorophenol ranged from 0.00148 to 0.00250 min−1. In all cases, we found that the reaction by-products consisted of chloride ions and mixtures of compounds including phenol (m/z = 93), 2,4-dichlorophenol (m/z = 163) and 4-chlorophenol (m/z = 128). The overall results of this study suggest that β-CD–PPI dendrimers are promising building blocks for the synthesis of composite and reactive membranes for the efficient removal of chlorinated organic pollutants from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abedini R, Mousavi SM, Aminzadeh R (2011) A novel cellulose acetate membrane using TiO2 nanoparticles: preparation, characterisation and permeation studies. Desalination 277:40–45

    Article  CAS  Google Scholar 

  • Adams FV, Nxumalo EN, Krause RWM, Hoek EMV, Mamba BB (2012) Preparation and characterization of polysulfone/β-cyclodextrin polyurethane composite nanofiltration membranes. J Membr Sci 405–406:291–299

    Article  Google Scholar 

  • Bai L, Wan H, Street SC (2009) Preparation of ultrafine FePt nanoparticles by chemical reduction in PAMAM-OH template. Coll Surf A 349:23–28

    Article  CAS  Google Scholar 

  • Bao C, Jin M, Lu R, Zhang T, Zhao YY (2003) Preparation of Au nanoparticles in the presence of low generational poly (amidoamine) dendrimer with surface hydroxyl groups. Mater Chem and Phys 81:160–165

    Article  CAS  Google Scholar 

  • Choi J, Kim Y, Choi SJ (2007) Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: laboratory studies. Chemosphere 67:1551–1557

    Article  CAS  Google Scholar 

  • Diallo MS, Christie S, Swaminathan P, Jnr Johnson JH, 111 Goddard WA (2005) Dendrimer enhanced ultrafiltration.1. Recovery of Cu (II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol 39:1366–1377

    Article  CAS  Google Scholar 

  • Gaya UB, Abdullah AH, Hussein MZ, Zainal Z (2010) Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder. Desalination 263:176–182

    Article  CAS  Google Scholar 

  • Huang W, Kuhn JN, Tsung C, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett 8:2027–2034

    Article  CAS  Google Scholar 

  • Jin XUE, Huang X, Hoek EMV (2009) Role of specific ion interactions in seawater RO membrane fouling by alginic acid. Environ Sci Technol 43:3580–3587

    Article  CAS  Google Scholar 

  • Kuvarega AT, Krause RWM, Mamba BB (2011) Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation. J Phys Chem C 115:22110–22120

    Article  CAS  Google Scholar 

  • Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219:48–56

    Article  CAS  Google Scholar 

  • Li N, Wei X, Mei Z, Xiong X, Chen S, Ye M, Ding S (2011) Synthesis and characterization of a novel polyamidoamine–cyclodextrin crosslinked copolymer. Carbohydr Res 346:1721–1727

    Article  CAS  Google Scholar 

  • Lianchao L, Baoguo W, Huimin T, Tianlu C, Jiping X (2006) A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane. J Membr Sci 269:84–93

    Article  Google Scholar 

  • Liu LF, Zhang PH, Yang FL (2010) Adsorptive removal of 2 4-DCP from water by fresh or regenerated chitosan/ACF/TiO2 membrane. Sep Purif Technol 70:354–361

    Article  CAS  Google Scholar 

  • Malinga SP, Arotiba OA, Krause RW, Mapolie SF, Mamba BB (2012) Synthesis and characterisation of generation 2 and 3 poly(propyleneimine) dendrimer capped nanoalloy. Mater Lett 68:324–326

    Article  CAS  Google Scholar 

  • Meyer DE, Bhattacharyya D (2007) Impact of membrane immobilization on particle formation and trichloroethylene dechlorination for bimetallic Fe/Ni nanoparticles in cellulose acetate membranes. J Phys Chem B 111:7142–7154

    Article  CAS  Google Scholar 

  • Mun CH, Ng WJ, He J (2008) Acidogenic sequencing batch reactor start-up procedures for induction of 2,4,6-trichlorophenol dechlorination. Water Res 42:1675–1683

    Article  CAS  Google Scholar 

  • Park S, Cheedrala K, Diallo MS, Kim C, Kim IS, Goddard AW (2012) Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks. J Nanopart Res. doi:10.1007/s11051-012-0884-7

    Google Scholar 

  • Sarkar A, Carver PI, Zhang T, Merrington A, Bruza KJ, Rousseau JL, Keinath SE, Dvornic PR (2010) Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes. J Membr Sci 349:421–428

    Article  CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

    Article  CAS  Google Scholar 

  • Scott RWJ, Wilson OM, Oh S, Kenik EA, Crooks RM (2004) Bimetallic palladium–gold dendrimer-encapsulated catalysts. J Am Chem Soc 4:7448–7453

    Google Scholar 

  • Singh K, Ingole PG, Bhrambhatt H, Bhattachayra A, Bajaj HC (2011) Preparation, characterization and performance evaluation of chiral selective composite membranes. Sep Purif Technol 78:138–146

    Article  CAS  Google Scholar 

  • Smuleac V, Bachas L, Bhattacharyya D (2010) Aqueous-phase synthesis of PAA in PVDF membrane pores for nanoparticle synthesis and dichlorobiphenyl degradation. J Membr Sci 346:310–317

    Article  CAS  Google Scholar 

  • Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membr Sci 379:131–137

    Article  CAS  Google Scholar 

  • Vassilev K, Turmanova S, Dimitrova M, Boneva S (2009) Poly (propylene imine) dendrimer complexes as catalysts for oxidation of alkenes. Eur Polym J 45:2269–2278

    Article  CAS  Google Scholar 

  • Wei X, Zhu L, Deng H, Xu Y, Zhu B, Huang Z (2008) New type of nanofiltration membrane based on crosslinked hyperbranched polymers. J Membr Sci 323:278–287

    Article  CAS  Google Scholar 

  • Weir M, Knecht M, Frenkel A, Crooks R (2010) Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles. Langmuir 26:1137–1146

    Article  CAS  Google Scholar 

  • Xu J, Dozier A, Bhattacharyya D (2005) Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J Nanopart Res 7:449–467

    Article  CAS  Google Scholar 

  • Yang L, Lv L, Zhang S, Pan B, Zhang W (2011) Catalytic dechlorination of monochlorobenzene by Pd/Fe nanoparticles immobilized within a polymeric anion exchanger. Chem Eng J 178:161–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the University of Johannesburg new generation scholarship for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Malinga.

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

Electronic supplementary material

Below is the link to the electronic supplementary material.

FTIR spectrum showing comparison between β-CDCIm, β-CD-G3-PPI and β-CD-G4-PPI conjugates (TIFF 8,213 kb)

11051_2013_1698_MOESM2_ESM.tif

1H NMR of β-CD-G3-PPI in D2O and insert shows the carbonyl proton (new bond formed between the dendrimer and cyclodextrin entities). (TIFF 92 kb)

ESI–MS spectrum for β-CD-G3-PPI (TIFF 87 kb)

ESI–MS spectrum for β-CD-G4-PPI (TIFF 137 kb)

11051_2013_1698_MOESM5_ESM.tif

FTIR spectrum showing comparison between TMC, PSf membrane and β-CD-PPI-PSf membrane before and after reaction with TMC (TIFF 52 kb)

SEM image of the Fe/Ni membrane (a) and EDS mapping for Fe (b) and Ni (c) (TIFF 546 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinga, S.P., Arotiba, O.A., Krause, R.W.M. et al. Composite polyester membranes with embedded dendrimer hosts and bimetallic Fe/Ni nanoparticles: synthesis, characterisation and application to water treatment. J Nanopart Res 15, 1698 (2013). https://doi.org/10.1007/s11051-013-1698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1698-y

Keywords

Navigation