Skip to main content
Log in

Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A study of the magnetic behavior of maghemite nanoparticles (NPs) in polyvinyl alcohol (PVA) polymer matrices prepared by physical cross-linking is reported. The magnetic nanocomposites (ferrogels) were obtained by the in situ co-precipitation of iron salts in the presence of PVA polymer, and subsequently subjected to freezing–thawing cycles. The magnetic behavior of these ferrogels was compared with that of similar systems synthesized using the glutaraldehyde. This type of chemical cross-linking agents presents several disadvantages due to the presence of residual toxic molecules in the gel, which are undesirable for biological applications. Characteristic particle size determined by several techniques are in the range 7.9–9.3 nm. The iron oxidation state in the NPs was studied by X-ray absorption spectroscopy. Mössbauer measurements showed that the NP magnetic moments present collective magnetic excitations and superparamagnetic relaxations. The blocking and irreversibility temperatures of the NPs in the ferrogels, and the magnetic anisotropy constant, were obtained from magnetic measurements. An empirical model including two magnetic contributions (large NPs slightly departed from thermodynamic equilibrium below 200 K, and small NPs at thermodynamic equilibrium) was used to fit the experimental magnetization curves. A deviation from the superparamagnetic regime was observed. This deviation was explained on the basis of an interacting superparamagnetic model. From this model, relevant magnetic and structural properties were obtained, such as the magnitude order of the dipolar interaction energy, the NPs magnetic moment, and the number of NPs per ferrogel mass unit. This study contributes to the understanding of the basic physics of a new class of materials that could emerge from the PVA-based magnetic ferrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allia P, Coisson M, Tiberto P, Vinai F, Knobel M, Novak MA, Nunes WC (2001) Granular Cu–Co alloys as interacting superparamagnets. Phys Rev B 64:144420. doi:10.1103/PhysRevB.64.144420

    Google Scholar 

  • Allia P, Tiberto P (2011) Dynamic effects of dipolar interactions on the magnetic behavior of magnetite nanoparticles. J Nanopart Res 13:7277–7293 doi:10.1007/s11051-011-0642-2

    Article  CAS  Google Scholar 

  • Bray JC, Merrill EW (1973) Poly(vinyl alcohol) hydrogels. Formation by electron beam irradiation of aqueous solutions and subsequent crystallization. J Appl Polym Sci 17(12):3779–3794. doi:10.1002/app.1973.070171219

    Article  Google Scholar 

  • Cezar JC, Knobel M, Tolentino HC (2001) Magnetic properties of Cu-permalloy granular alloy. J Magn Magn Mater 226(0):1519–1521, doi:10.1016/S0304-8853(00)00944-6

    Google Scholar 

  • Chandrasekar M, Suresh S, Senthilkumar T (2012) Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids—a review. Renew Sustain Energy Rev 16(6):3917–3938, doi:10.1016/j.rser.2012.03.013

    Google Scholar 

  • Chen J, Yang L, Liu Y, Ding G, Pei Y, Li J, Hua G, Huang J (2005) Preparation and characterization of magnetic targeted drug controlled-release hydrogel microspheres. Macromol Symp 225(1):71–80 doi:10.1002/masy.200550706

    Article  CAS  Google Scholar 

  • Cima LG, Lopina ST (1995) Network structures of radiation-crosslinked star polymer gels. Macromolecules 28(20):6787–6794 doi:10.1021/ma00124a013

    Google Scholar 

  • Faidley L, Han Y, Tucker K, Timmons S, Hong Wc (2010) Axial strain of ferrogels under cyclic magnetic fields. Smart Mater Struct 19(7). doi:10.1088/0964-1726/19/7/075001

  • Ferrari EF, da Silva FCS, Knobel M (1997) Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys. Phys Rev B 56:6086–6093. doi:10.1103/PhysRevB.56.6086

  • François NJ, Allo S, Jacobo SE, Daraio ME (2007) Composites of polymeric gels and magnetic nanoparticles: preparation and drug release behavior. J Appl Polym Sci 105(2):647–655. doi:10.1002/app.26321

    Article  Google Scholar 

  • Furukawa H, Shimojyo R, Ohnishi N, Fukuda H, Kondo A (2003) Affinity selection of target cells from cell surface displayed libraries: a novel procedure using thermo-responsive magnetic nanoparticles. Appl Microbiol Biotechnol 62:478–483. doi:10.1007/s00253-003-1330-7

    Google Scholar 

  • Gonzalez J, Hoppe C, Muraca D, Sánchez F, Alvarez V (2011) Synthesis and characterization of PVA ferrogels obtained through a one-pot freezing-thawing procedure. Colloid Polym Sci 289:1839–1846. doi:10.1007/s00396-011-2501-1

    Article  CAS  Google Scholar 

  • Gonzalez JS, Hoppe CE, Alvarez VA (2012) Advances in materials science research. In: Poly (vinyl alcohol) ferrogels: synthesis and applications, Chapter 8, Nova Science Publishers, Inc., New York

  • Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94(5):3520–3528. doi:10.1063/1.1599959

    Google Scholar 

  • Hassan C, Peppas N (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Biopolymers PVA hydrogels, anionic polymerisation nanocomposites, Adv. Polym. Sci., vol 153. Springer Heidelberg, pp 37–65, doi:10.1007/3-540-46414-X_2

  • Hill DJT, Whittaker AK, Zainuddin (2011) Water diffusion into radiation crosslinked PVA–PVP network hydrogels. Radiat Phys Chem 80(2):213–218. doi:10.1016/j.radphyschem.2010.07.035

  • Hoppe CE, Rivadulla F, Arturo López-Quintela M, Carmen Bujan M, Rivas J, Serantes D, Baldomir D (2008) Effect of submicrometer clustering on the magnetic properties of free-standing superparamagnetic nanocomposites. J Phys Chem C 112(34):13099–13104. doi:10.1021/jp8039548

  • Jolivet JP, Chanéac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 0:481–483. doi:10.1039/B304532N

    Article  CAS  Google Scholar 

  • Kim YI, Kim D, Lee CS (2003) Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Physica B 337(14):42–51. doi:10.1016/S0921-4526(03)00322-3

    Google Scholar 

  • Knobel M, Nunes W, Socolovsky L, De Biasi E, Vargas J, Denardin J (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8(6):2836–2857. http://www.ingentaconnect.com/content/asp/jnn/2008/00000008/00000006/art00009

  • Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46(7):2523–2558. doi:10.1109/TMAG.2010.2046907

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. doi:10.1021/cr068445e

    Google Scholar 

  • Liang X, Wang X, Zhuang J, Chen Y, Wang D, Li Y (2006) Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv Funct Mater 16(14):1805–1813. doi:10.1002/adfm.200500884

    Article  CAS  Google Scholar 

  • Lima E, De Biasi E, Vasquez Mansilla M, Saleta ME, Effenberg F, Rossi LM, Cohen R, Rechenberg HR, Zysler RD (2010) Surface effects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized. J Appl Phys 108(10):103919. doi:10.1063/1.3514585

    Google Scholar 

  • Liu TY, Hu SH, Liu TY, Liu DM, Chen SY (2006) Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22(14):5974–5978. doi:10.1021/la060371e

    Google Scholar 

  • Longo A, Wang X, Ruotolo A, Peluso A, Carotenuto G, Lortz R (2012) Effect of the polymeric matrix on the structural and magnetic properties of hematite/polymer composites. J Nanopart Res 14:1–8. doi:10.1007/s11051-012-1314-6

    Google Scholar 

  • Luis F, Torres JM, García LM, Bartolomé J, Stankiewicz J, Petroff F, Fettar F, Maurice JL, Vaurés A (2002) Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: Influence of the surface and of interparticle interactions. Phys Rev B 65:094, 409. doi:10.1103/PhysRevB.65.094409

  • Mao L, Hu Y, Piao Y, Chen X, Xian W, Piao D (2005) Structure and character of artificial muscle model constructed from fibrous hydrogel. Curr Appl Phys 5(5):426–428. doi:10.1016/j.cap.2004.11.003

    Google Scholar 

  • Masoudi A, Hosseini HRM, Shokrgozar MA, Ahmadi R, Oghabian MA (2012) The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int J Pharm 433(12):129–141 doi:10.1016/j.ijpharm.2012.04.080

    Google Scholar 

  • Matsuyama H, Teramoto M, Urano H (1997) Analysis of solute diffusion in poly(vinyl alcohol) hydrogel membrane. J Membr Sci 126(1):151–160. doi:10.1016/S0376-7388(96)00287-6

    Google Scholar 

  • Mawad D, Odell R, Poole-Warren LA (2009) Network structure and macromolecular drug release from poly(vinyl alcohol) hydrogels fabricated via two crosslinking strategies. Int J Pharm 366(12):31–37. doi:10.1016/j.ijpharm.2008.08.038

    Google Scholar 

  • Micha J, Dieny B, Régnard J, Jacquot J, Sort J (2004) Estimation of the Co nanoparticles size by magnetic measurements in Co/SiO2 discontinuous multilayers. J Magn Magn Mater 272276, Supplement(0):E967–E968. doi:10.1016/j.jmmm.2003.12.268

  • Mitsumata T, Ikeda K, Gong J, Osada Y, Szabó D, Zrínyi M (1999) Magnetism and compressive modulus of magnetic fluid containing gels. J Appl Phys 85(12):8451–8455. doi:10.1063/1.370626

    Google Scholar 

  • Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Delivery Rev 54(1):79–98. doi:10.1016/S0169-409X(01)00241-1

    Google Scholar 

  • Morup S, Topsoe H (1976) Mössbauer studies of thermal excitations in magnetically ordered microcrystals. Appl phys 11:63–66. doi:10.1007/BF00895017

    Article  Google Scholar 

  • Morup S, Dumesic JA, Topsoe H (1980) Applications of Mössbauer Spectroscopy. Academic Press Inc., New York

    Google Scholar 

  • Nunes WC, Folly WSD, Sinnecker JP, Novak MA (2004) Temperature dependence of the coercive field in single-domain particle systems. Phys Rev B 70:014, 419. doi:10.1103/PhysRevB.70.014419

  • Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22). doi:10.1088/0022-3727/42/22/224001

  • Peppas NA, Mongia NK (1997) Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics. Eur J Pharm Biopharm 43(1):51–58. doi:10.1016/S0939-6411(96)00010-0

    Google Scholar 

  • Pich A, Bhattacharya S, Lu Y, Boyko V, Adler HJP (2004) Temperature-sensitive hybrid microgels with magnetic properties. Langmuir 20(24):10706–10711. doi:10.1021/la040084f

    Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339. doi:10.1016/S0169-409X(01)00203-4

    Google Scholar 

  • Raikher Y, Stolbov O (2005) Magnetodeformational effect in ferrogel objects. J Magn Magn Mater 289(0):62–65. doi:10.1016/j.jmmm.2004.11.018

    Google Scholar 

  • Rivas J, Bañobre-López M, Piñeyro-Redondo Y, Rivas B, López-Quintela M (2012) Magnetic nanoparticles for application in cancer therapy. J Magn Magn Mater 324(21):3499–3502. doi:10.1016/j.jmmm.2012.02.075

    Google Scholar 

  • Samba Sivudu K, Rhee K (2009) Preparation and characterization of pH-responsive hydrogel magnetite nanocomposite. Colloids Surf A 349(13):29–34. doi:10.1016/j.colsurfa.2009.07.048

  • Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11. doi:10.1007/s00396-008-1949-0

    Article  CAS  Google Scholar 

  • Serantes D, Baldomir D, Pereiro M, Botana J, Prida VM, Hernando B, Arias JE, Rivas J (2010a) Magnetocaloric effect in magnetic nanoparticle systems: how to choose the best magnetic material? J Nanosci Nanotechnol 10(4):2512–2517. doi:10.1166/jnn.2010.1424

    Article  CAS  Google Scholar 

  • Serantes D, Baldomir D, Pereiro M, Hoppe CE, Rivadulla F, Rivas J (2010b) Nonmonotonic evolution of the blocking temperature in dispersions of superparamagnetic nanoparticles. Phys Rev B 82:134433. doi:10.1103/PhysRevB.82.134433

  • Sholklapper TZ, Jacobson CP, Visco SJ, De Jonghe LC (2008) Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes. Fuel Cells 8(5):303–312. doi:10.1002/fuce.200800030

    Article  CAS  Google Scholar 

  • Vandenberghe R, Barrero C, da Costa G, Van San E, De Grave E (2000) Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyperfine Interact 126:247–259. doi:10.1023/A:1012603603203

    Article  CAS  Google Scholar 

  • Vargas J, Lima J E, Zysler R, Duque J, Biasi E, Knobel M (2008) Effective anisotropy field variation of magnetite nanoparticles with size reduction. Eur Phys J B 64:211–218. doi:10.1140/epjb/e2008-00294-6

    Article  CAS  Google Scholar 

  • Wu JH, Ko SP, Liu HL, Kim S, Ju JS, Kim YK (2007) Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Mater Lett 61(1415):3124–3129. doi:10.1016/j.matlet.2006.11.032

    Google Scholar 

  • Yang X, Liu Q, Chen X, Zhu Z (2008) Investigation on the formation mechanisms of hydrogels made by combination of γ-ray irradiation and freeze-thawing. J Appl Polym Sci 108(2):1365–1372. doi:10.1002/app.27832

    Article  CAS  Google Scholar 

  • Zboril R, Mashlan M, Petridis D (2002) Iron(iii) oxides from thermal processes-synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem Mater 14(3):969–982. doi:10.1021/cm0111074

    Google Scholar 

  • Zhao Z, Huang D, Yin Z, Chi X, Wang X, Gao J (2012) Magnetite nanoparticles as smart carriers to manipulate the cytotoxicity of anticancer drugs: magnetic control and pH-responsive release. J Mater Chem 22:15717–15725. doi:10.1039/C2JM31692G

    CAS  Google Scholar 

  • Zrínyi M, Barsi L, Szabó D, Kilian HG (1997) Direct observation of abrupt shape transition in ferrogels induced by nonuniform magnetic field. J Chem Phys 106(13):5685–5692. doi:10.1063/1.473589

    Google Scholar 

Download references

Acknowledgements

The work at UNICAMP was supported by FAPESP and CNPq, Brazil. We appreciate the financial support of LNLS, Campinas, Sao Paulo, Brazil (Research Project D04B-XAFS1-10818 - XAS Study of Nanomaterials for Biomedical Applications); CONICET, Argentina (PIP 01111); and ANPCyT, Argentina (PICT 00898, PICT 2010-2721). The authors also want to thank C. Hoppe for her helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mendoza Zélis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (6190 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza Zélis, P., Muraca, D., Gonzalez, J.S. et al. Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications. J Nanopart Res 15, 1613 (2013). https://doi.org/10.1007/s11051-013-1613-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1613-6

Keywords

Navigation