Skip to main content
Log in

Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Thermally denatured human serum albumin interacts with ~3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured protein packing resulting from protein corona formation. We have also found that NH2 blocking of the protein strongly affects the ability of the protein to protect AgNP from different salts/ions such as NaCl, PBS, Hank’s buffer, Tris–HCl, MES, and DMEM. Additionally, AgNP can be readily prepared in aqueous solutions by a photochemical approach employing HSA as an in situ protecting agent. The role of the protein in this case is beyond that of protecting agent; thus, Ag+ ions and I-2959 complexation within the protein structure also affects the efficiency of AgNP formation. Blocking NH2 in HSA modified the AgNP growth profile, surface plasmon band shape, and long-term stability suggesting that amine groups are directly involved in the formation and post-stabilization of AgNP. In particular, AgNP size and shape are extensively influenced by NH2 blocking, leading primarily to cubes and plates with sizes around 5–15 nm; in contrast, spherical monodisperse 4.0 nm AgNP are observed for native HSA. The nanoparticles prepared by this protocol are non-toxic in primary cells and have remarkable antibacterial properties. Finally, surface plasmon excitation of native HSA@AgNP promoted loss of protein conformation in just 5 min, suggesting that plasmon heating causes protein denaturation using continuous light sources such as commercial LED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alarcon E, Aspee A, Abuin EB, Lissi EA (2012) Evaluation of solute binding to proteins and intra-protein distances from steady state fluorescence measurements. J Photochem Photobiol B 106(1):1–17. doi:10.1016/j.jphotobiol.2011.11.002

    Article  CAS  Google Scholar 

  • Alarcón E, Edwards AM, Garcia AM, Muñoz M, Aspée A, Borsarelli CD, Lissi EA (2009) Photophysics and photochemistry of zinc phthalocyanine/bovine serum albumin adducts. Photochem Photobiol Sci 8(2):255–263. doi:10.1039/B815726J

    Article  Google Scholar 

  • Alarcón E, Edwards AM, Aspée A, Gonzalez-Nilo D, Moran FE, Borsarelli CD, Lissi EA, Poblete H, Scaiano JC (2010) Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dye localization. Photochem Photobiol Sci 9(1):93–102. doi:10.1039/B9PP00091G

    Article  Google Scholar 

  • Alarcón E, Udekwu K, Skog M, Pacioni NL, Stamplecoskie KL, Gonzalez-Béjar M, Polisetti N, Wickham A, Richter-Dahlfors A, Griffith M, Scaiano JC (2012) The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 33(19):4947–4956. doi:10.1016/j.biomaterials.2012.03.033

    Article  Google Scholar 

  • Aspée A, Orrego A, Alarcón E, Alarcón CL, Poblete H, González-Nilo D (2009) Antioxidant reactivity towards nitroxide probes anchored into human serum albumin. A new model for studying antioxidant repairing capacity of protein radicals. Bioorg Med Chem Lett 19(22):6382–6385. doi:10.1016/j.bmcl.2009.09.070

    Article  Google Scholar 

  • Ben-Yakar A, Eversole D, Ekici O (2008) Spherical and anisotropic gold nanoparticles in plasmonic laser phototherapy of cancer. In: Kumar C (ed) Non-magnetic metallic nanomaterials for life science, vol 10, nanomaterials for life sciences. Wiley, Weinheim, pp 493–539

    Google Scholar 

  • Borissevitch IE, Tominaga TT, Imasato H, Tabak M (1996) Fluorescence and optical absorption study of interaction of two water soluble porphyrins with bovine serum albumin. The role of albumin and porphyrin aggregation. J Lumin 69(2):65–76. doi:10.1016/0022-2313(96)00037-3

    Article  CAS  Google Scholar 

  • Bretschneider JC, Reismann M, Von Plessen G, Simon U (2009) Photothermal control of the activity of HRP–functionalized gold nanoparticles. Small 5(22):2549–2553. doi:10.1002/smll.200900544

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. doi:10.1021/cr030063a

    Article  CAS  Google Scholar 

  • Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637. doi:10.1016/j.addr.2008.08.003

    Article  CAS  Google Scholar 

  • Cheong SK, Krishnan S, Cho SH (2009) Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy. Med Phys 36(10):4664–4671. doi:10.1118/1.3215536

    Article  CAS  Google Scholar 

  • Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62(3):339–345. doi:10.1016/j.addr.2009.11.006

    Article  CAS  Google Scholar 

  • Cınta S, Vogel E, Maniu D, Aluas M, Iliescu T, Cozar O, Kiefer W (1999) SERS mechanisms of the vitamin PP on different Au and Ag surfaces. J Mol Struct 482–483(1–3):679–684. doi:10.1016/S0022-2860(99)00024-1

    Google Scholar 

  • Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37(9):2096–2126. doi:10.1039/B707314N

    Article  CAS  Google Scholar 

  • De-Llanos R, Sánchez-Cortes S, Domingo C, García-Ramos JV, Sevilla P (2011) Surface plasmon effects on the binding of antitumoral drug emodin to bovine serum albumin. J Phys Chem C 115(25):12419–12429. doi:10.1021/jp111683c

    Article  CAS  Google Scholar 

  • Dulkeith E, Niedereichholz T, Klar TA, Feldmann J, von Plessen G, Gittins DI, Mayya KS, Caruso F (2004) Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 70(20):205424. doi:10.1103/PhysRevB.70.205424

    Article  Google Scholar 

  • Eby DM, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR (2009) Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano 3(4):984–994. doi:10.1021/nn900079e

    Article  CAS  Google Scholar 

  • Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49(2):147–152. doi:10.1111/j.1472-765X.2009.02648.x

    Article  CAS  Google Scholar 

  • Elswaifi SF, Palmieri JR, Hockey KS, Rzigalinski BA (2009) Antioxidant nanoparticles for control of infectious disease. Infect Disord Drug Targets 9(4):445–452. doi:10.2174/187152609788922528

    Article  CAS  Google Scholar 

  • Epps DE, Rub TJ, Canola V, Chari A, Zamia M (1998) Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein. J Pharm Pharmacol 51(1):41–48. doi:0.1211/0022357991772079

    Article  Google Scholar 

  • Fasciani C, Bueno Alejo CJ, Grenier M, Netto-Ferreira JC, Scaiano JC (2011) High-temperature organic reactions at room temperature using plasmon excitation: decomposition of dicumyl peroxide. Org Lett 13(2):204–207. doi:10.1021/ol1026427

    Article  CAS  Google Scholar 

  • Garcia AM, Alarcon E, Munoz M, Scaiano JC, Edwards AM, Lissi EA (2011) Photophysical behavior and photodynamic activity of zinc phthalocyanines associated to liposomes. Photochem Photobiol Sci 10(4):504–514. doi:10.1039/C0PP00289E

    Article  Google Scholar 

  • Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, Peukert W, Treuel L (2012) Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir 28(25):9673–9679. doi:10.1021/la301104a

    Article  CAS  Google Scholar 

  • Harmatz D, Blauer G (1975) Optical properties of bilirubin-serum albumin complexes in aqueous solution. A comparison among albumins from different species. Archives of Biochemistry and Biophysics 170(2):375–383. doi:10.1016/0003-9861(75)90132-0

  • Herne TM, Ahern AM, Carrel RL (1991) Surface-enhanced Raman spectroscopy of peptides: preferential N-terminal adsorption on colloidal silver. J Am Chem Soc 113(3):846–854. doi:10.1021/ja00003a018

    Article  CAS  Google Scholar 

  • Holland JT, Lau C, Brozik S, Atanassov P, Banta S (2011) Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. J Am Chem Soc 133(48):19262–19265. doi:10.1021/ja2071237

    Article  CAS  Google Scholar 

  • Honore B, Brodersen R (1984) Albumin binding of anti-inflammatory drugs. Utility of a site oriented versus a stoichiometric analysis. Mol Pharmacol 25(1):137–150

    CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  • Jockusch S, Landis MS, Freiermuth B, Turro NJ (2001) Photochemistry and photophysics of α-hydroxy ketones. Macromolecules 34(6):1619–1626. doi:10.1021/ma001836p

    Article  CAS  Google Scholar 

  • Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6(1):100–115. doi:10.1021/nl0516862

    Article  Google Scholar 

  • Kragh-Hansen U (1990) Structure and ligand binding properties of human serum albumin (review). Dan Med Bull 37(1):57–84

    CAS  Google Scholar 

  • Kubista M, Sojback R, Ericksson S, Albinsson B (1994) Experimental correction for the inner-filter effect in fluorescence spectra. Analyst 119(3):417–419. doi:10.1039/AN9941900417

    Article  CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122. doi:10.1007/s00253-009-2159-5

    Article  CAS  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein–nanoparticle interactions. Nano Today 3(1):40–47. doi:10.1016/S1748-0132(08)70014-8

    Article  CAS  Google Scholar 

  • Mariam J, Dongre PM, Kothari DC (2011) Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluoresc 21(6):2193–2199. doi:10.1007/s10895-011-0922-3

    Article  CAS  Google Scholar 

  • Marin ML, McGilvray KL, Scaiano JC (2008) Photochemical strategies for the synthesis of gold nanoparticles from Au(III) and Au(I) using photoinduced free radical generation. J Am Chem Soc 130(49):16572–16584. doi:0.1021/ja803490n

    Article  CAS  Google Scholar 

  • McEachran M, Kitaev V (2008) Direct structural transformation of silver platelets into right bipyramids and twinned cube nanoparticles: morphology governed by defects. Chem Comm 44:5737–5739. doi:10.1039/B813519C

    Article  Google Scholar 

  • McGilvray KL, Decan MR, Wang D, Scaiano JC (2006) Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J Am Chem Soc 128(50):15980–15981. doi:10.1021/ja066522h

    Article  CAS  Google Scholar 

  • Murawala P, Phadnis SM, Bhonde RR, Prasad BLV (2009) In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies. Coll Surf B 73(2):224–228. doi:10.1016/j.colsurfb.2009.05.029

    Article  CAS  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870. doi:10.1021/jp0516846

    Article  CAS  Google Scholar 

  • Nangia Y, Wangoo N, Goyal N, Suri CR (2009) A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Fact 8(1):39–46. doi:10.1186/1475-2859-8-39

    Article  Google Scholar 

  • Nayac NC, Shin K (2008) Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres. Nanotechnology 46(19):265603. doi:10.1088/0957-4484/19/26/265603

    Article  Google Scholar 

  • Pattabi RM, Pattabi M (2009) Synthesis and characterization of thiosalicylic acid stabilized gold nanoparticles. Spect Acta: A 74(1):195–199

    Article  Google Scholar 

  • Peters T (1996) All about albumin proteins: biochemistry, genetics and medical applications, 1st edn. Academic Press, New York

    Google Scholar 

  • Pinkerton TC, Koeplinger KA (1990) Determination of warfarin-human serum albumin protein binding parameters by an improved Hummel-Dreyer high-performance liquid chromatographic method using internal surface reversed-phase columns. Anal Chem 62(19):2114–2122. doi:10.1021/ac00218a013

    Article  CAS  Google Scholar 

  • Ravindran A, Singh A, Raichur AM, Chandrasekaran N, Mukherjee A (2010) Studies on interaction of colloidal Ag nanoparticles with Bovine serum albumin (BSA). Coll Surf B 76(1):32–37. doi:10.1016/j.colsurfb.2009.10.005

    Article  CAS  Google Scholar 

  • Raymond FC, Gerald GV, Alexander N (1967) Fluorescence decay times: proteins, coenzymes, and other compounds in water. Science 156(3777):949–951. doi:10.1126/science.156.3777.949

    Article  Google Scholar 

  • Richardson HH, Carlson MT, Tandler PJ, Hernandez P, Govorov AO (2009) Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 9(3):1139–1146. doi:10.1021/nl8036905

    Article  CAS  Google Scholar 

  • Sakai T, Alexandridis P (2005) Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J Phys Chem B 109(16):7766–7777. doi:10.1021/jp046221z

    Article  CAS  Google Scholar 

  • Scaiano JC, Aliaga C, Maguire S, Wang D (2006) Magnetic field control of photoinduced silver nanoparticle formation. J Phys Chem B 110(26):12856–12859. doi:10.1021/jp061723t

    Article  CAS  Google Scholar 

  • Scaiano JC, Netto-Ferreira JC, Alarcon E, Billone P, Bueno Alejo CJ, Crites C-OL, Decan M, Fasciani C, González-Béjar M, Hallett-Tapley G, Grenier M, McGilvray KL, Pacioni NL, Pardoe A, René-Boisneuf L, Schwartz-Narbonne R, Silvero MJ, Stamplecoskie K, T-S W (2011) Tuning plasmon transitions and their applications in organic photochemistry. Pure Appl Chem 83(4):913–930. doi:10.1351/PAC-CON-11-01-09

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interf Sci 145(1–2):83–96. doi:10.1016/j.cis.2008.09.002

    Article  CAS  Google Scholar 

  • Shi X, Thomas TP, Myc LA, Kotlyar A, Baker JRJ (2007) Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 9(42):5712–5720. doi:10.1039/B709147H

    Article  CAS  Google Scholar 

  • Slocik JM, Tam F, Halas NJ, Naik RR (2007) Peptide-assembled optically responsive nanoparticle complexes. Nano Lett 7(4):1054–1058. doi:10.1021/nl070267x

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85. doi:10.1016/0003-2697(85)90442-7

    Article  CAS  Google Scholar 

  • Stamplecoskie KG, Scaiano JC (2010) Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J Am Chem Soc 132(6):1825–1827. doi:10.1021/ja910010b

    Article  CAS  Google Scholar 

  • Stamplecoskie KG, Scaiano JC, Tiwari VS, Anis H (2011) Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. J Phys Chem C 115(5):1403–1409. doi:10.1021/jp106666t

    Article  CAS  Google Scholar 

  • Suh JS, Moskovits M (1986) Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. J Am Chem Soc 108(16):4711–4718. doi:10.1021/ja00276a005

    Article  CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. doi:10.1126/science.1077229

    Article  CAS  Google Scholar 

  • Swift J, Butts CA, Cheung-Lau J, Yerubandi V, Dmochowski IJ (2009) Efficient self-assembly of archaeoglobus fulgidus ferritin around metallic cores. Langmuir 25(9):5219–5225. doi:10.1021/la8040743

    Article  CAS  Google Scholar 

  • Tran ML, Centeno SP, Hutchison JA, Engelkamp H, Liang D, Van Tendeloo G, Sels BF, Hofkens J, Uji-i H (2008) Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires. J Am Chem Soc 130(51):17240–17241. doi:10.1021/ja807218e

    Article  CAS  Google Scholar 

  • Triulzi RC, Dai Q, Zou J, Leblanc RM, Gu Q, Orbulescu J, Huo Q (2008) Photothermal ablation of amyloid aggregates by gold nanoparticles. Colloids Surf B 63(2):200–208. doi:10.1016/j.colsurfb.2007.12.006

    Article  CAS  Google Scholar 

  • Varner KE, El-Badawy A, Feldhake D, Venkatapathy R (2010) State-of-the-science review: everything nanosilver and more. U.S. Environmental Protection Agency, Washington, DC. EPA/600/R-10/084

  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Nanocarriers in ocular drug delivery: an update review. Curr Pharm Dess 15(23):2724–2750. doi:10.2174/12724

    Article  CAS  Google Scholar 

  • Wikler MA (2005) Performance standards for antimicrobial susceptibility testing : fifteenth informational supplement, vol 25. Clinical and Laboratory Standards Institute, Wayne Pa, USA

    Google Scholar 

  • Wu Q, Cao H, Luan Q, Zhang J, Wang Z, Warner JH, Watt AAR (2008) Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg Chem 47(13):5882–5888. doi:10.1021/ic8002228

    Article  CAS  Google Scholar 

  • Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y (2008) Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophys Acta 1784(7–8):1020–1027. doi:10.1016/j.bbapap.2008.03.018

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada. We thank Michel Grenier who designed the LED irradiation system, as well as for his support in laser flash photolysis measurements. EIA. thanks Becas Chile for Post-Doctoral support. HP thanks the Programa de Doctorado en Ciencias Aplicadas at Universidad de Talca, Chile for financial support. We would like to thanks Prof. Christopher Boddy, University of Ottawa, for providing the bacterial strand employed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Scaiano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarcon, E.I., Bueno-Alejo, C.J., Noel, C.W. et al. Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. J Nanopart Res 15, 1374 (2013). https://doi.org/10.1007/s11051-012-1374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1374-7

Keywords

Navigation