Skip to main content
Log in

Fabrication of antimicrobial bacterial cellulose–Ag/AgCl nanocomposite using bacteria as versatile biofactory

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In nature, a number of nanocomposites are formed through biomineralization-relevant processes under mild conditions. In the present study, a total “biologic” route to fabricate nanocomposite is reported. Non-pathogenic bacteria, Gluconacetobacter xylinum, was utilized as a versatile biofactory, which produced biopolymer bacterial cellulose (BC) and induced the formation of Ag/AgCl nanoparticles, yielding BC–Ag/AgCl nanocomposite. Scanning electron microscopy revealed that nanoparticles with average size of 17.4 nm were randomly embedded into the BC network; transmission electron microscopy and X-ray diffraction confirmed that the nanoparticles were mixtures of face-centered cubic silver and silver chloride nanoparticles. Moreover, the content of silver in the BC nanocomposite is around 0.05 wt%, determined by atomic absorption spectrometry and X-ray photoelectron spectroscopy analysis. The entire process of nanocomposite fabrication was conducted at ambient environment without utilizing toxic agents or producing hazardous products, which is not only environmentally friendly but also with less chances to generate harmful products to human bodies as biomedical materials. The resultant nanocomposite displayed the desirable activity in inhibiting bacterial growth of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli microorganisms on agar plate and in liquid culture, indicating the potential of the material as antimicrobial wound dressing materials. This work demonstrated the feasibility of using microorganism to fabricate nanocomposite, especially for biomedical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An C, Peng S, Sun Y (2010) Facile synthesis of sunlight driven AgCl: Ag plasmonic nanophotocatalyst. Adv Mater 22:2570–2574

    Article  CAS  Google Scholar 

  • Anil Kumar S, Abyaneh MK, Gosavi S, Kulkarni SK, Pasricha R, Ahmad A, Khan M (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128:11958–11963

    Article  CAS  Google Scholar 

  • Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson J, Li C (2010) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6:3534–3541

    Article  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  Google Scholar 

  • Chen P, Cho S, Jin H (2010) Modification and applications of bacterial celluloses in polymer science. Macromol Res 18:309–320

    Article  Google Scholar 

  • Choi M, Shin KH, Jang J (2010) Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light. J Colloid Interf Sci 341:83–87

    Article  CAS  Google Scholar 

  • Currie HA, Deschaume O, Naik RR, Perry CC, Kaplan DL (2011) Genetically engineered chimeric silk-silver binding proteins. Adv Funct Mater 21:2889–2895

    Article  CAS  Google Scholar 

  • Fan T-X, Chow S-K, Zhang D (2009) Biomorphic mineralization: from biology to materials. Prog Mater Sci 54:542–659

    Article  CAS  Google Scholar 

  • Geng J, Yang D, Zhu Y, Cao L, Jiang Z, Sun Y (2011) One-pot biosynthesis of polymer-inorganic nanocomposite. J Nanopart Res 13:2661–2670

    Article  CAS  Google Scholar 

  • Grande C, Torres F, Gomez C, Carmen Bañó M (2009) Nanocomposite of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615

    Article  CAS  Google Scholar 

  • Hu W, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci EngC 29:1216–1219

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Gurunathan S (2009) Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresource Technol 100:5356–5358

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrm T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50:5438–5466

    Article  CAS  Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  Google Scholar 

  • Lee SW, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892

    Article  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohyd Polym 72:43–51

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar P, Alam M, Kumar R (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surf A 380:156–161

    Article  CAS  Google Scholar 

  • Olsson R, Samir MASA, Salazar-Alvarez G, Belova L, Ström V, Berglund L, Ikkala O, Nogués J, Gedde U (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588

    Article  CAS  Google Scholar 

  • Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MSP, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposite. Biomacromolecules 9:1643–1651

    Article  CAS  Google Scholar 

  • Ramanathan R, ÓMullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using morganella psychrotolerans. Langmuir 27:714–719

    Article  CAS  Google Scholar 

  • Sakaguchi T, Burgess JG, Matsunaga T (1993) Magnetite formation by a sulphate-reducing bacterium. Nature 365:47–49

    Article  CAS  Google Scholar 

  • Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40:696–753

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci 275:177–182

    Article  CAS  Google Scholar 

  • Sun D, Yang J, Wang X (2009) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2:287–292

    Article  Google Scholar 

  • Suresh AK, Doktycz MJ, Wang W, Moon J-W, Gu B, Meyer HM, Hensley DK, Allison DP, Phelps TJ, Pelletier DA (2011) Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater 7:4253–4258

    Article  CAS  Google Scholar 

  • Tang Y, Subramaniam VP, Lau TH, Lai Y, Gong D, Kanhere PD, Cheng YH, Chen Z, Dong Z (2011) In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate honeycomb by gas phase reaction for visible light degradation of phenol solution. Appl Catal B Environ 106:577–585

    Article  CAS  Google Scholar 

  • Thakkar K, Mhatre S, Parikh R (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol 6:257–262

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Zhang H, Han J, Yang B (2010a) Structural fabrication and functional modulation of nanoparticle-polymer composites. Adv Funct Mater 20:1533–1550

    Article  CAS  Google Scholar 

  • Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010b) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposite and their Application in biosensing. Adv Funct Mater 20:1152–1160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Basic Research Program of China (2009CB724705), National Science Fund for Distinguished Young Scholars (21125627), and the Programme of Introducing Talents of Discipline to Universities (No. B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Yang, D., Wang, Y. et al. Fabrication of antimicrobial bacterial cellulose–Ag/AgCl nanocomposite using bacteria as versatile biofactory. J Nanopart Res 14, 1084 (2012). https://doi.org/10.1007/s11051-012-1084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1084-1

Keywords

Navigation