Skip to main content
Log in

Nickel nanoparticles in carbon structures prepared by solid-phase pyrolysis of nickel-phthalocyanine

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

By using a modified method of solid-phase pyrolysis of metal-phthalocyanines, we have synthesized ferromagnetic Ni nanoparticles in different carbon structures: amorphous carbon plates, multiwall carbon nanotubes, carbon fibers, and graphitized capsules. The composition, structure and morphology of prepared composite materials have been studied by energy dispersive X-ray microanalysis, scanning and transmission electron microscopy, and X-ray diffraction technique. It has been found that the sizes of nickel nanoparticles (10–500 nm) and the type of carbon structures strongly depend on the pyrolysis conditions. By using the X-band ferromagnetic resonance measurements, we have revealed features of the temperature dependence of resonance spectra of single-domain and multi-domain Ni nanoparticles in Ni/C composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai L, Wan H, Street Sh (2009) Preparation of ultrafine FePt nanoparticles by chemical reduction in PAMAM-OH template. Colloids Surf A 349:23–28

    Article  CAS  Google Scholar 

  • Chen Y, Yu J (2005) Growth direction control of aligned carbon nanotubes. Carbon 43:3183–3186

    Article  CAS  Google Scholar 

  • Gusev AI (2009) Nanomaterials, nanostructures, nanotechnologies. Fizmatlit, Moscow

    Google Scholar 

  • Huang S, Dai L (2002) Microscopic and macroscopic structures of carbon nanotubes produced by pyrolysis of iron phthalocyanine. J Nanoparticle Res 4:145–155

    Article  CAS  Google Scholar 

  • Jao J, Seraphin S, Wang X, Withers J (1996) Preparation and properties of ferromagnetic carbon-coated Fe, Co and Ni nanoparticles. J Appl Phys 80:103–108

    Article  Google Scholar 

  • Klinke C, Kern K (2007) Iron nanoparticle formation in a metal-organic matrix: from ripening to gluttony. Nanotechnology 18:4–215601

    Article  Google Scholar 

  • Manukyan AS, Mirzakhanyan AA, Badalyan GR, Shirinyan GH, Sharoyan EG (2010) Preparation and characterization of nickel nanoparticles in different carbon matrices. J Contemp Phys 45:132–136

    Article  Google Scholar 

  • Mirzakhanyan AA, Manukyan AS, Badalyan GR, Khachatryan TK, Maslova OA, Yuzyuk YI, Bugaev LA, Sharoyan EG (2010) Raman spectra of nickel–carbon nanocomposites. Proc SPIE 7998:79981B-1–79981B-4

    Google Scholar 

  • Petrov YI (1986) Clusters and fine particles. Nauka, Moscow

    Google Scholar 

  • Sharoyan VE, Harutyunyan AR (1993) Production of small cobalt particles. J Contemp Phys 28:28–32

    Google Scholar 

  • Sharoyan EG, Manukyan AS, Mirzakhanyan AA, Badalyan GR, Aghababyan EA, Harutyunyan NP (2009a) Preparation and characterization of Ni–Cu magnetic nanoparticles in pyrolytic carbon. In: Proceedings of the 7th international conference semiconductor micro- and nanoelectronics. Tsakhcadzor, Armenia, pp 195–198

  • Sharoyan EG, Manukyan AS, Mirzakhanyan AA, Badalyan GR, Maloyan HG, Zakharyan RV, Nurijanyan MKh and Asatryan HR (2009b) Preparation and magnetic properties of carbon-coated Ni–Cu nanoalloys for self-regulating hyperthermia. In: Proceedings of the conference laser physics–2008. Ashtarak, Armenia, pp 9–12

  • Shulepov SV (1972) Physics of carbon–graphite materials. Metallurgiya, Moscow

    Google Scholar 

  • Song J, Sun M, Chen Q, Wang J, Zhang G, Xue Z (2004) Field emission from carbon nanotube arrays fabricated by pyrolysis of iron phthalocyanine. J Phys D Appl Phys 37:5–9

    Article  CAS  Google Scholar 

  • Suenaga K, Yudasaka M, Colliex C, Iijima S (2000) Radially modulated nitrogen distribution in CNx nanotubular structures prepared by CVD using Ni phthalocyanine. Chem Phys Lett 316:365–367

    Article  CAS  Google Scholar 

  • Zhang XF, Dong XL, Hwang H, Liu YY, Wang WN, Zhu XG, Lv B, Lei JP (2006) Microwave absorbtion properties of the carbon-coated nickel nanoparticles. Appl Phys Lett 89:053115-1–053115-3

    Google Scholar 

  • Zhi L, Kolb U, Mullen K (2006) Novel carbon nanostructures prepared by solid-state pyrolysis of iron phthalocyanine. New Carbon Mater 21:109–113

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of the International Innovative Nanotechnology Center (ININC) CIS No.10881, ANSEF No. PS-CONDMATEX-1199 and Republic of Armenia No. 65. We are grateful to T. K. Khachatryan for assistance in the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Sharoyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manukyan, A.S., Mirzakhanyan, A.A., Badalyan, G.R. et al. Nickel nanoparticles in carbon structures prepared by solid-phase pyrolysis of nickel-phthalocyanine. J Nanopart Res 14, 982 (2012). https://doi.org/10.1007/s11051-012-0982-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0982-6

Keywords

Navigation