Skip to main content
Log in

Micellar assemblies from amphiphilic polyurethanes for size-controlled synthesis of silver nanoparticles dispersible both in polar and nonpolar media

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A size-controlled synthesis of silver nanoparticles (AgNPs) dispersible in polar and nonpolar media was carried out in micellar assemblies from amphiphilic invertible polyurethanes (AIPUs) based on poly(ethylene glycol) as a hydrophilic constituent and polytetrahydrofuran as a hydrophobic constituent. At a low concentration, AIPUs form micelles with a hydrophilic interior and a hydrophobic exterior. As concentration increases, individual micelles self-assemble into micellar assemblies with hydrophilic interior and hydrophobic exterior domains. It was shown that these domains can be applied simultaneously as nanoreactors and colloidal stabilizers to synthesize size-controlled batches of AgNPs in a nonpolar solvent. Size control and narrow particle size distribution can be facilitated by changes in the AIPU composition, macromolecular configuration, and polymer solution concentration. Depending on the length of polymer hydrophilic and hydrophobic fragments, and fragment distribution along the macromolecule, the size of fabricated AgNPs has been changed from 6 to 14 nm. Owing to the invertible properties of polyurethanes, the synthesized silver nanoparticles can be successfully dispersed in either polar or nonpolar media, where they form stable colloidal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed F, Pakunlu RI, Srinivas G, Brannan A, Bates F, Klein ML, Minko T, Discher DE (2006) Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm 3:340–350

    Article  CAS  Google Scholar 

  • Almgren M, Brown W, Hvidt S (1995) Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution. Colloid Polym Sci 273:2–15

    Article  CAS  Google Scholar 

  • Azagarsamy MA, Yesilyurt V, Thayumanavan S (2010) Disassembly of dendritic micellar containers due to protein binding. J Am Chem Soc 132:4550–4551

    Article  CAS  Google Scholar 

  • Bajpai SK, Johnson S (2005) Superabsorbent hydrogels for removal of divalent toxic ions. Part I: synthesis and swelling characterization. React Funct Polym 62:271–283

    Article  CAS  Google Scholar 

  • Banin U, Millo O (2004) Properties. In: Schmid G (ed) Nanoparticles: from theory to application. Wiley-VCH, Weinheim, pp 305–367

    Google Scholar 

  • Basu S, Vutukuri DR, Thayumanavan S (2005) Homopolymer micelles in heterogeneous solvent mixtures. J Am Chem Soc 127:16794–16795

    Article  CAS  Google Scholar 

  • Bates FS (1991) Polymer-polymer phase behavior. Science 251:898–905

    Article  CAS  Google Scholar 

  • Black CT (2007) Polymer self-assembly as a novel extension to optical lithography. ACS Nano 1:147–150

    Article  CAS  Google Scholar 

  • Bradley JS, Schmid G, Talapin DV, Shevchenko EV, Weller H (2004) Syntheses and characterizations: 3.2 synthesis of metal nanoparticles. In: Schmid G (ed) Nanoparticles: from theory to application. Wiley-VCH, Weinheim, pp 185–238

    Google Scholar 

  • Caba BL, Zhang Q, Carroll MRJ, Woodward RC, St. Pierre TG, Gilbert EP, Riffle JS, Davis RM (2010) Nanostructure of PEO–polyurethane–PEO triblock copolymer micelles in water. J Colloid Interface Sci 344:81–89

    Article  CAS  Google Scholar 

  • Cheng JY, Ross CA, Smith HI, Thomas EL (2006) Templated self-assembly of block copolymers: top-down helps bottom-up. Adv Mater 18:2505–2521

    Article  CAS  Google Scholar 

  • Dal Lago V, de Oliveira LF, de Almeida GK, Kobarg J, Cardoso MB (2011) Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties. J Mat Chem 21:12267–12273

    Article  CAS  Google Scholar 

  • Deng Z, Schreiber HP (1991) Orientation phenomena at polyurethane surfaces. J Adhesion 36:71–82

    Article  CAS  Google Scholar 

  • Dong A, Hou G, Sun D (2003) Properties of amphoteric polyurethane waterborne dispersions: II. Macromolecular self-assembly behavior. J Colloid Interface Sci 266:276–281

    Article  CAS  Google Scholar 

  • Griffin WC (1954) Calculation of HLB values of nonionic surfactants. J Soc Cosmet Chem 5:249–256

    Google Scholar 

  • Harada A, Kataoka K (2006) Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Prog Polym Sci 31:949–982

    Article  CAS  Google Scholar 

  • Hevus I, Kohut A, Voronov A (2010) Amphiphilic invertible polyurethanes: synthesis and properties. Macromolecules 43:7488–7494

    Article  CAS  Google Scholar 

  • Jeong B, Bae YH, Lee DS, Kim SW (1998) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    Google Scholar 

  • Jin R, Cao Y, Mirkin CA, Kelley KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1091–1093

    Article  Google Scholar 

  • Jung HM, Price KE, McQuade DT (2003) Synthesis and characterization of cross-linked reverse micelles. J Am Chem Soc 125:5351–5355

    Article  CAS  Google Scholar 

  • Kale TS, Klaikherd A, Popere B, Thayumanavan S (2009) Supramolecular assemblies of amphiphilic homopolymers. Langmuir 25:9660–9670

    Article  CAS  Google Scholar 

  • Kellermann M, Bauer W, Hirsch A, Schade B, Ludwig K, Bottcher C (2004) The first account of a structurally persistent micelle. Angew Chem Int Ed 43:2959–2962

    Article  CAS  Google Scholar 

  • Kim BJ, Im SS, Oh SG (2001) Investigation on the solubilization locus of aniline-HCl salt in SDS micelles with 1H NMR Spectroscopy. Langmuir 17:565–566

    Article  CAS  Google Scholar 

  • Kohut A, Voronov A (2009) Hierarchical micellar structures from amphiphilic invertible polyesters: 1H NMR spectroscopic study. Langmuir 25:4356–4360

    Article  CAS  Google Scholar 

  • Kohut A, Voronov A, Samaryk V, Peukert W (2007) Amphiphilic invertible polyesters as reducing and stabilizing agents in the formation of metal nanoparticles. Macromol Rapid Commun 28:1410–1414

    Article  CAS  Google Scholar 

  • Krylova G, Eremenko A, Smirnova N, Eustis S (2005) Structure and spectra of photochemically obtained nanosized silver particles in presence of modified porous silica. Int J Photoenergy 7:193–198

    Article  CAS  Google Scholar 

  • Lee MY, Kim SH, Kim JT, Kim SW, Lim KTJ (2008) Ordering transitions of semifluorinated diblock copolymers. Nanosci Nanotechnol 8:4864–4868

    Article  CAS  Google Scholar 

  • Lee MY, Jeong YT, Lim KT, Choi BC, Kim HG, Gal YS (2009) Multiple morphologies of self-assembled amphiphilic Poly(FOMA-b-EO) diblock copolymers. Mol Cryst Liq Cryst 508:173–182

    Article  Google Scholar 

  • Lim KT, Lee MY, Moon MJ, Lee GD, Hong SS, Dickson JL, Johnston KP (2002) Synthesis and properties of semifluorinated block copolymers containing poly(ethylene oxide) and poly(fluorooctyl methacrylates) via atom transfer radical polymerization. Polymer 43:7043–7049

    Article  CAS  Google Scholar 

  • Luzinov I, Minko S, Tsukruk V (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698

    Article  CAS  Google Scholar 

  • Malynych S, Chumanov G (2003) Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J Am Chem Soc 125:2896–2898

    Article  CAS  Google Scholar 

  • Martinez Tomalino L, Voronov A, Kohut A, Peukert W (2008) Study of amphiphilic polyester micelles by hyper-rayleigh scattering: invertibility and phase transfer. J Phys Chem B 112:6338–6343

    Article  CAS  Google Scholar 

  • Meier MAR, Gohy JF, Fustin CA, Schubert US (2004) Combinatorial synthesis of star-shaped block copolymers:  host–guest chemistry of unimolecular reversed micelles. J Am Chem Soc 126:11517–11521

    Article  CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles:  Suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347

    Article  CAS  Google Scholar 

  • Okkema AZ, Fabrizius DJ, Grasel TG, Cooper SL, Zdrahala RJ (1989) Bulk, surface and blood-contacting properties of polyether polyurethanes modified with polydimethylsiloxane macroglycols. Biomaterials 10:23–32

    Article  CAS  Google Scholar 

  • Pike JK, Ho T (1996) Water-induced surface rearrangements of poly(dimethylsiloxane–urea–urethane) segmented block copolymers. Chem Mater 8:856–860

    Article  CAS  Google Scholar 

  • Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170

    Article  CAS  Google Scholar 

  • Ryu DY, Shin K, Drockenmuller E, Hawker CJ, Russell TP (2005) A generalized approach to the modification of solid surfaces. Science 308:236–239

    Article  CAS  Google Scholar 

  • Shafranska O, Voronov A, Kohut A, Wu XF, Akhatov IS (2009) Polymer–metal complexes as a catalyst for the growth of carbon nanostructures. Carbon 47:3137–3139

    Article  CAS  Google Scholar 

  • Sieburg L, Kohut A, Kislenko V, Voronov A (2010) Amphiphilic invertible polymers for adsolubilization on hydrophilic and hydrophobized silica nanoparticles. J Colloid Interface Sci 351:116–121

    Article  CAS  Google Scholar 

  • Stoykovich MP, Kang H, Daoulas KC, Liu G, Liu CC, de Pablo JJ, Müller M, Nealy PF (2007) Directed self-assembly of block copolymers for nanolithography: fabrication of isolated features and essential integrated circuit geometries. ACS Nano 1:168–175

    Article  CAS  Google Scholar 

  • Sunder A, Kramer M, Hanselmann R, Malhaupt R, Frey H (1999) Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols. Angew Chem Int Ed 38:3552–3555

    Article  CAS  Google Scholar 

  • Takahara A, Okkema AZ, Cooper SL, Coury AJ (1991) Surface molecular mobility and platelet reactivity of segmented poly(etherurethaneureas) with hydrophilic and hydrophobic soft segment components. Biomaterials 12:324–334

    Article  CAS  Google Scholar 

  • Takahara A, Jo NJ, Kajiyama TJ (1998) Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes. Biomater Sci Polym Ed 1:17–29

    Article  Google Scholar 

  • Thomas V, Murali Mohan Y, Sreedharm B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395

    Article  CAS  Google Scholar 

  • Thurn-Albrecht T, Steiner R, De Rouchey J, Stafford CM, Huang E, Bal M, Tuominen M, Tuominen M, Hawker CJ, Russell TP (2000) Nanoscopic Templates from Oriented Block Copolymer Films. Adv Mater 12:787–791

    Article  CAS  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  CAS  Google Scholar 

  • Voronov A, Kohut A, Peukert W, Voronov S, Gevus O, Tokarev V (2006) Invertible architectures from amphiphilic polyesters. Langmuir 22:1946–1948

    Article  CAS  Google Scholar 

  • Voronov A, Kohut A, Peukert W (2007) Synthesis of amphiphilic silver nanoparticles in nanoreactors from invertible polyester. Langmuir 23:360–363

    Article  CAS  Google Scholar 

  • Voronov A, Kohut A, Vasylyev S, Peukert W (2008) Mechanism of silver ion reduction in concentrated solutions of amphiphilic invertible polyesters in nonpolar solvent at room temperature. Langmuir 24:12587–12594

    Article  CAS  Google Scholar 

  • Wu X, Qiao Y, Yang H, Wang JJ (2010) Self-assembly of a series of random copolymers bearing amphiphilic side chains. Colloid Interface Sci 349:560–564

    Article  CAS  Google Scholar 

  • Yesilyurt V, Ramireddy R, Thayumanavan S (2011) Photoregulated release of noncovalent guests from dendritic amphiphilic nanocontainers. Angew Chem Int Ed 50:3038–3042

    Article  CAS  Google Scholar 

  • Yu K, Zhang L, Eisenberg A (1996) Novel morphologies of “crew-cut” aggregates of amphiphilic diblock copolymers in dilute solution. Langmuir 12:5980–5984

    Article  CAS  Google Scholar 

  • Zhang L, Eisenberg A (1995) Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268:1728–1731

    Article  CAS  Google Scholar 

  • Zhang L, Eisenberg A (1996) Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc 118:3168–3181

    Article  CAS  Google Scholar 

  • Zhang L, Yu JC, Yip HY, Li Q, Kwong KW, Xu AW, Wong PK (2003) Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir 19:10372–10380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Science Foundation (CBET, 0966526). We also thank Dr. Angel Ugrinov (Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University) for performing XRD measurements and Scott Payne (NDSU Electron Microscopy Center) for TEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Voronov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8810 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hevus, I., Kohut, A. & Voronov, A. Micellar assemblies from amphiphilic polyurethanes for size-controlled synthesis of silver nanoparticles dispersible both in polar and nonpolar media. J Nanopart Res 14, 820 (2012). https://doi.org/10.1007/s11051-012-0820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0820-x

Keywords

Navigation