Skip to main content
Log in

Aggregation and adhesion of gold nanoparticles in phosphate buffered saline

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In applications in medicine and more specifically drug delivery, the dispersion stability of nanoparticles plays a significant role on their final performances. In this study, with the use of two laser technologies, dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), we report a simple method to estimate the stability of nanoparticles dispersed in phosphate buffered saline (PBS). Stability has two features: (1) self-aggregation as the particles tend to stick to each other; (2) disappearance of particles as they adhere to surrounding substrate surfaces such as glass, metal, or polymer. By investigating the effects of sonication treatment and surface modification by five types of surfactants, including nonylphenol ethoxylate (NP9), polyvinyl pyrrolidone (PVP), human serum albumin (HSA), sodium dodecyl sulfate (SDS) and citrate ions on the dispersion stability, the varying self-aggregation and adhesion of gold nanoparticles dispersed in PBS are demonstrated. The results showed that PVP effectively prevented aggregation, while HSA exhibited the best performance in avoiding the adhesion of gold nanoparticle in PBS onto glass and metal. The simple principle of this method makes it a high potential to be applied to other nanoparticles, including virus particles, used in dispersing and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • (2011) The dose makes the poison. Nat Nanotechnol 6(6):329

  • Alexis F, Pridgen E et al (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Article  CAS  Google Scholar 

  • Barreto JA, O’Malley W et al (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23(12):H18–H40

    Article  CAS  Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, Mineola

    Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    Article  CAS  Google Scholar 

  • Bootz A, Vogel V et al (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57(2):369–375

    Article  CAS  Google Scholar 

  • Cho EC, Zhang Q et al (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6(6):385–391

    Article  CAS  Google Scholar 

  • Crespo-Quesada M, Andanson J-M et al (2011) UV-ozone cleaning of supported poly(vinylpyrrolidone)-stabilized palladium nanocubes: effect of stabilizer removal on morphology and catalytic behavior. Langmuir 27(12):7909–7916

    Article  CAS  Google Scholar 

  • Du S, Kendall K et al (2010) Measuring number-concentrations of nanoparticles and viruses in liquids on-line. J Chem Technol Biotechnol 85(9):1223–1228

    Article  CAS  Google Scholar 

  • Filipe V, Hawe A et al (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810

    Article  CAS  Google Scholar 

  • Gullotti E, Yeo Y (2009) Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6(4):1041–1051

    Article  CAS  Google Scholar 

  • He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358(6383):209–215

    Article  CAS  Google Scholar 

  • Kendall K, Dhir A et al (2009) A new measure of molecular attractions between nanoparticles near kT adhesion energy. Nanotechnology 20(27):275701

    Article  Google Scholar 

  • Kendall K, Kendall M et al (2010a) Adhesion of cells, viruses and nanoparticles. Springer, New York

    Google Scholar 

  • Kendall K, Du S et al (2010b) Virus concentration and adhesion measured by laser tracking. J Adhes 86(10):1029–1040

    Article  CAS  Google Scholar 

  • Kobayashi Y, Tadaki Y et al (2007) Deposition of gold nanoparticles on polystyrene spheres by electroless metal plating technique. J Phys Conf Ser 61:582–586

    Article  CAS  Google Scholar 

  • Lavik E, von Recum H (2011) The role of nanomaterials in translational medicine. ACS Nano 5(5):3419–3424

    Article  CAS  Google Scholar 

  • Lee JH, Kim DO et al (2007) Direct metallization of gold nanoparticles on a polystyrene bead surface using cationic gold ligands. Macromol Rapid Commun 28(5):634–640

    Article  CAS  Google Scholar 

  • Lee EP, Peng Z et al (2008) Electrocatalytic properties of Pt nanowires supported on Pt and W gauzes. ACS Nano 2(10):2167–2173

    Article  CAS  Google Scholar 

  • Malloy A, Carr B (2006) NanoParticle tracking analysis—the Halo System. Part Part Syst Charact 23(2):197–204

    Article  Google Scholar 

  • Radziuk D, Grigoriev D et al (2010) Ultrasound-assisted fusion of preformed gold nanoparticles. J Phys Chem C 114(4):1835–1843

    Article  CAS  Google Scholar 

  • Schellekens H (2002) Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov 1(6):457–462

    Article  CAS  Google Scholar 

  • Sekhon BS, Kamboj SR (2010) Inorganic nanomedicine—part 2. Nanomed Nanotechnol Biol Med 6(5):612–618

    Article  CAS  Google Scholar 

  • Sungchul J, Daniel FB (2010) Adhesion mechanisms of nanoparticle silver to substrate materials: identification. Nanotechnology 21(5):055204

    Article  Google Scholar 

  • Takayasu MM, Galembeck F (1998) Determination of the equivalent radii and fractal dimension of polystyrene latex aggregates from sedimentation coefficients. J Colloid Interf Sci 202(1):84–88

    Article  CAS  Google Scholar 

  • Tian J, Jin J et al (2010) Self-assembly of gold nanoparticles and polystyrene: a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae. Langmuir 26(11):8762–8768

    Article  CAS  Google Scholar 

  • Tian J, Zheng F et al (2011) Self-assembly of polystyrene with pendant hydrophilic gold nanoparticles: the influence of the hydrophilicity of the hybrid polymers. J Mater Chem 21(42):16928–16934

    Article  CAS  Google Scholar 

  • Zhong Z, Chen F et al (2006) Assembly of Au colloids into linear and spherical aggregates and effect of ultrasound irradiation on structure. J Mater Chem 16(5):489–495

    Article  CAS  Google Scholar 

  • Zhou J, Ralston J et al (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interf Sci 331(2):251–262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Research Fellowship from Science City Research Alliance (SCRA) awarded to Dr Du.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangfeng Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2012_758_MOESM1_ESM.mpg

A short movie of NTA measurement for the sample with 30 ppm PVP added in gold nanoparticles dispersed in PBS. Supplementary material 1 (MPG 1674 kb)

Supplementary material 2 (DOC 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, S., Kendall, K., Toloueinia, P. et al. Aggregation and adhesion of gold nanoparticles in phosphate buffered saline. J Nanopart Res 14, 758 (2012). https://doi.org/10.1007/s11051-012-0758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0758-z

Keywords

Navigation