Skip to main content
Log in

The effect of oxidation on the surface-near lattice relaxation in FeNi nanoparticles

  • Special Issue: Nanostructured Materials 2010
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The near-surface oxidation-induced lattice relaxation and compositional changes of FeNi alloy nano-particles are investigated. Using a newly developed transfer system, the particle structure was characterised by means of aberration-corrected HR-TEM prior to exposing the particles to ambient air. This allows for a comparison of oxidised and un-oxidised particles, respectively. Independent of the oxidation, the surface-near and/or interface-near metal lattice was found to be expanded by up to 3%. EELS profiles clearly reveal an enrichment of Fe at the particle surfaces. MD simulations in combination with HR-TEM contrast simulations were conducted to investigate the effect of the Fe enrichment on the structural relaxation. The results show that a surface-near over-stoichiometric enrichment of Fe indeed causes a dilation that counteracts a compression of the lattice at the particle surface as obtained for homogeneously alloyed particles. Besides, the large lattice mismatch between the metallic cores and the NiFe2O4 shells causes the formation of step dislocations in the close vicinities of the interface. In essence, the surface-near lattice relaxation in oxide free particles is found to be due to a segregation of Fe to the surface, whereas in the case of shell–core particles, no systematic influence of the oxide on the lattice relaxation was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antoniak C, Spasova M, Trunova A, Fauth K, Wilhelm F, Rogalev A, Minar J, Ebert H, Farle M, Wende H (2009) Inhomogeneous alloying in FePt nanoparticles as a reason for reduced magnetic moments. J Phys 21(33). doi:10.1088/0953-8984/21/33/336002

  • Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684

    Article  CAS  Google Scholar 

  • Colliex C, Manoubi T, Ortiz C (1991-II) Electron-energy-loss-spectroscopy near-edge fine structure in the iron-oxygen system. Phys Rev B 4(20):11402

    Google Scholar 

  • D’Addato S, Pasquali L, Gazzadi G, Verucchi R, Capelli R, Nannarone S (2000) Growth of Fe ultrathin films on Ni(111): structure and electronic properties. Surf Sci 454-456:692

    Article  Google Scholar 

  • Danneberg A, Gruner ME, Hucht A, Entel P (2009) Surface energies of stoichiometric FePt and CoPt alloys and their implications for nanoparticle morphologies. Phys Rev B 80(24). doi:10.1103/PhysRevB.80.245438

  • Dmitrieva O, Spasova M, Antoniak C, Acet M, Dumpich G, Kaestner J, Farle M, Fauth K, Wiedwald U, Boyen HG, Ziemann P (2007) Magnetic moment of Fe in oxide-free FePt nanoparticles. Phys Rev B 76(6). doi:10.1103/PhysRevB.76.064414

  • Doerner MF, Nix WD (1988) Stresses and deformation processes in thin-films on substrates. CRC Crit Rev Solid State Mater Sci 14(3):225

    Article  CAS  Google Scholar 

  • Dumpich G, Wassermann E, Manns V, Keune W, Murayama S, Miyako Y (1987) Structural and magnetic properties of Ni x Fe1−x evaporated thin-films. J Magn Magn Mater 67(1):55

    Article  CAS  Google Scholar 

  • Egerton R (1996) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum Publishers, New York

    Google Scholar 

  • Flagan RC, Lunden MM (1995) Particle structure control in nanoparticle synthesis from the vapor phase. Mater Sci Eng A 204(1–2):113

    Google Scholar 

  • Freund LB, Nix WD (1996) Critical thickness condition for a strained compliant substrate/epitaxial film system. Appl Phys Lett 69(2):173

    Article  CAS  Google Scholar 

  • Ghaly M, Nordlund K, Averback RS (1999) Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Philos Mag A 79(4):795

    Article  CAS  Google Scholar 

  • Gibbons DF (1957) Acoustic relaxations in ferrite single crystals. J Appl Phys 28(7):810

    Article  CAS  Google Scholar 

  • Haberland H, Mall M, Moseler M, Qian Y, Reiners T, Thurner Y (1994) Filling Of micron-sized contact holes with copper by energetic cluster-impact. J Vac Sci Technol A 12(5):2925

    Article  CAS  Google Scholar 

  • Leapman R, Grunes L, Fejes P (1982) Study od the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys Rev B 26(1):614

    Article  CAS  Google Scholar 

  • Leapman RD, Rez P, Mayers DF (1980) K-shell, L-shell and M-shell generalized oscillator-strenghts and Ionization cross-sections for fast electron collissions. J Chem Phys 72(2):1232

    Article  CAS  Google Scholar 

  • Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K (2002) High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramircroscopy 92(3–4):233

    Article  CAS  Google Scholar 

  • Massalski TB, Murray JL, Bennet LH, Baker H (1986) Binary phase diagrams. ASM International, Materials Park, p 1096

    Google Scholar 

  • Methfessel M, Hennig D, Scheffler M (1992) Trends of the surface relaxations, surface energies, and work-functions of the 4D transition-metals. Phys Rev B 46(8):4816

    Article  CAS  Google Scholar 

  • Meyer R, Entel P (1998) Martensite-austenite transition and phonon dispersion curves of FeNi studied by molecular-dynamics simulations. Phys Rev B 57(9):5140

    Article  CAS  Google Scholar 

  • Nix WD (1989) Mechanical properties of thin-films. Metall Trans A 20(11):2217

    Article  Google Scholar 

  • Rellinghaus B, Stappert S, Acet M, Wassermann EF (2003) Magnetic properties of FePt nanoparticles. J Magn Magn Mater 266(1-2):142–154

    Article  CAS  Google Scholar 

  • Stappert S, Rellinghaus B, Acet M, Wassermann EF (2003) Gas-phase preparation of l10 ordered fept nanoparticles. J Cryst Growth 252:440–450

    Article  CAS  Google Scholar 

  • Total Resolution (2010) MacTempasX. http://www.totalresolution.com

  • Verbeeck J, Van Aert S (2004) Model based quantification of EELS spectra. Ultramircroscopy 101(2–4):207

    Article  CAS  Google Scholar 

  • Vitos L, Ruban AV, Skriver HL, Kollar J (1998) The surface energy of metals. Surf Sci 411(1–2):186

    Article  CAS  Google Scholar 

  • Wang RM, Dmitrieva O, Farle M, Dumpich G, Ye HQ, Poppa H, Kilaas R, Kisielowski C (2008) Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys Rev Lett 100:017205

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the facility department of the IFW Dresden for developing the transfer module and to A. Hartmann for his support with the EELS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darius Pohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieniek, B., Pohl, D., Schultz, L. et al. The effect of oxidation on the surface-near lattice relaxation in FeNi nanoparticles. J Nanopart Res 13, 5935–5946 (2011). https://doi.org/10.1007/s11051-011-0405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0405-0

Keywords

Navigation