, Volume 13, Issue 10, pp 4491-4509

Ultrafast laser melting of Au nanoparticles: atomistic simulations

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In spite of the technological importance of laser modification and processing of nanoparticles, the interaction of laser energy with nanoparticles is not well understood. In this work, integrated molecular dynamics (MD) and two-temperature (TTM) computational models have been developed to study ultrafast laser interaction with free Au nanoparticles with sizes 2.44–6.14 nm. At low intensity, when surface premelting and solid–liquid phase transition dominate, a nonhomogeneous surface premelting mechanism was identified. The appearance of a contiguous surface liquid layer (complete surface premelting) is size dependent and is not related to surface premelting history. The effects of temporary superheating and stable supercooling of nanoparticles were found and examined.