, Volume 13, Issue 6, pp 2469-2473
Date: 20 Nov 2010

a-Si/SiN x multilayered light absorber for solar cell

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


40 alternate a-Si/SiN x multilayer are incorporated as an absorber layer in a p–i–n solar cell. The device is fabricated using hot-wire chemical vapor deposition (HWCVD) technique. The structure of the multilayer film is examined by high resolution transmission electron microscopy (HR-TEM) which shows distinct formation of alternate a-Si and SiN x layers. The a-Si and SiN x layers have thickness of ~3.5 and 4 nm, respectively. The photoluminescence (PL) of multilayer film shows bandgap energy of ~2.52 eV, is larger than that of the c-Si and a-Si. Dark and illuminated current–voltage (IV) characterization of the ML films shows that these ML are photosensitive. In the present work, it is seen that the p–i–n structure with i-layer as ML quantum well (QW) structures show photovoltaic effect with relatively high open-circuit voltage (V OC). The increment of bandgap energy in PL and high V OC of the device is attributed to the quantum confinement effect (QCE).