Skip to main content
Log in

Field-emission enhancement of molybdenum oxide nanowires with nanoprotrusions

Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The field-emission properties of molybdenum oxide nanowires grown on a silicon substrate and its emission performance in various vacuum gaps are reported in this article. A new kind of molybdenum oxides named nanowires with nanoscale protrusions on their surfaces were grown by thermal vapor deposition with a length of ~1 μm and an average diameter of ~50 nm. The morphology, structure, composition and chemical states of the prepared nanostructures were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). According to XRD, XPS, and TEM analyses, the synthesized samples were composed of MoO2 nanowires formed over a thin layer of crystalline Mo4O11. TEM observation revealed that these nanowires have some nanoscale protrusion on their surface. These nanoprotrusions resulted in enhancement of field-emission properties of nanowires comprising nanoprotrusions. The turn-on emission field and the enhancement factor of this type of nanostructures were measured 0.2 V/μm and 42991 at the vacuum gap of 300 μm, respectively. These excellent emission properties are attributed to the special structure of the nanowires that have potential for utilizing in vacuum nanoelectronic and microelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Al-Kandari S, Al-Kandari H, Al-Kharafi F, Katrib A (2008) The catalytic reactions of n-pentane and 1-pentene on different molybdenum oxides and metal surfaces. Appl Catal A 341(1–2):160–167

    CAS  Google Scholar 

  • Azimirad R, Khademi A, Akhavan O, Moshfegh AZ (2009) Growth of Na0.3WO3 nanorods for the field emission application. J Phys D 42:205405.1–205405.6

    Article  Google Scholar 

  • Baek Y, Yong K (2007) Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder. J Phys Chem C 111:1213–1218

    Article  CAS  Google Scholar 

  • Bhosle V, Tiwari A, Narayan J (2005) Epitaxial growth and properties of MoO x (2 < x<2.75) films. J Appl Phys 97:083539-1–083539-6

    Article  Google Scholar 

  • Brox B, Olefjord I (1988) ESCA Studies of MoO2 and MoO3. Surf Interface Anal 13:3–6

    Article  CAS  Google Scholar 

  • Chang M-T, Chou L-J, Chueh Y-L, Lee Y-C, Hsieh C-H, Chen C-D, Lan Y-W, Chen L-J (2007) Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties. Small 3(4):658–664

    Article  CAS  Google Scholar 

  • Cho C-P, Perng T-P (2007) Field emission of Alq3 nanoprotrusions. Nanotechnology 18:125202 (5 pp)

    Google Scholar 

  • Choi J–G, Thompson LT (1996) XPS study of as-prepared and reduced molybdenum oxides. Appl Surf Sci 93(2):143–149

    Article  CAS  Google Scholar 

  • Connolly T, Smith RC, Hernandez Y, Gun’ko Y, Coleman JN, Carey JD (2009) Carbon-nanotube-polymer nanocomposites for field-emission cathodes. Small 5(7):826–831

    Article  CAS  Google Scholar 

  • Hu B, Mai L, Chen W, Yang F (2009) From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport. ACS Nano 3(2):478–482

    Article  CAS  Google Scholar 

  • Huang K, Pan Q, Yang F, Ni Sh, He D (2007) Growth and field emission of tungsten oxide nanotip arrays on ITO glass substrate. Appl Surf Sci 253:8923–8927

    Article  CAS  Google Scholar 

  • Huang K, Pan Q, Yang F, Ni S, He D (2008) The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties. Mater Res Bull 43:919–925

    Article  CAS  Google Scholar 

  • Khademi A, Azimirad R, Zavarian AA, Moshfegh AZ (2009) Growth and field emission study of molybdenum oxide nanostars. J Phys Chem C 113:19298–19304

    Article  CAS  Google Scholar 

  • Kim G–T, Park T–K, Chung H, Kim Y–T, Kwon M–H, Choi J–G (1999) Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds. Appl Surf Sci 152(1–2):35–43

    Article  CAS  Google Scholar 

  • Knizhnik AA, Iskandarova IM, Bagaturyants AA, Potapkin BV, Fonseca LRC (2005) Impact of oxygen on the work functions of Mo in vacuum and on ZrO2. J Appl Phys 97:064911-1–064911-6

    Article  Google Scholar 

  • Late DJ, Misra P, Singh BN, Kukreja LM, Joag DS, More MA (2009) Enhanced field emission from pulsed laser deposited nanocrystalline ZnO thin films on Re and W. Appl Phys A 95(2):613–620

    Article  CAS  Google Scholar 

  • Late DJ, Kashid RV, Rout CS, More MA, Joag DS (2010) Low threshold field electron emission from solvothermally synthesized WO2.72 nanowires. Appl Phys A 98(4):751–756

    Article  CAS  Google Scholar 

  • Lee K-H, Shin C-D, Chen I-G, Li B-J (2007) The effect of nanoscale protrusions on field-emission properties for GaN nanowires. J Electrochem Soc 154(10):K87–K91

    Article  CAS  Google Scholar 

  • Li YB, Bando Y, Golberg D, Kurashima K (2002) Field emission from MoO3 nanobelts. Appl Phys Lett 81(26):5048–5050

    Article  CAS  Google Scholar 

  • Li M-K, Wang D-Z, Ding Y-W, Guo X-Y, Ding S, Jin H (2007) Morphology and field emission from ZnO nanowire arrays synthesized at different temperature. Mater Sci Eng A 452–453:417–421

    Google Scholar 

  • Li L, Xu X, Chew H, Huang X, Dou X, Pan S, Li G, Zhang L (2008) Direct growth of Al nanowire arrays: thermal expansion and field emission properties. J Phys Chem C 112:5328–5332

    Article  CAS  Google Scholar 

  • Liang Y, Tracy C, Weisbrod E, Fejes P, Theodore ND (2006) Effect of SiO2 incorporation on stability and work function of conducting MoO2. Appl Phys Lett 88:081901-1–081901-3

    Google Scholar 

  • Liu J, Zhao Y, Zhang Z (2003) Low-temperature synthesis of large-scale arrays of aligned tungsten oxide nanorods. J Phys Condens Matter 15:L453–L461

    Article  CAS  Google Scholar 

  • Liu J, Zhang Z, Pan C, Zhao Y, Su X, Zhou Y, Yu D (2004) Enhanced field emission properties of MoO2 nanorods with controllable shape and orientation. Mater Lett 58:3812–3815

    Article  CAS  Google Scholar 

  • Liu BD, Bando Y, Tang CC, Xu FF, Golberg D (2005) Excellent field-emission properties of P-doped GaN nanowires. J Phys Chem B 109:21521–21524

    Article  CAS  Google Scholar 

  • Liu X–X, Bian L–J, Zhang L, Zhang L–J (2007) Composite films of polyaniline and molybdenum oxide formed by electrocodeposition in aqueous media. J Solid State Electrochem 11(9):1279–1286

    Article  CAS  Google Scholar 

  • Luo L, Yu K, Zhu Z, Zhang Y, Ma H, Xue C, Yang Y, Chen S (2004) Field emission from GaN nanobelts with herringbone morphology. Mater Lett 58:2893–2896

    Article  CAS  Google Scholar 

  • Mendes FMT, Weibel DE, Blum R–P, Middeke J, Hafemeister M, Niehus H, Achete CA (2008) Preparation and characterization of well-ordered MoOx films on Cu3Au(1 0 0)–oxygen substrate (CAOS). Catal Today 133:187–191

    Article  Google Scholar 

  • Patil RS, Uplane MD, Patil PS (2006) Structural and optical properties of electrodeposited molybdenum oxide thin films. Appl Surf Sci 252(23):8050–8056

    Article  CAS  Google Scholar 

  • Seelaboyina R, Huang J, Park J, Kang DH, Choi WB (2006) Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions. Nanotechnology 17:4840–4844

    Article  CAS  Google Scholar 

  • Wang JX, Liu DF, Yan XQ, Yuan HJ, Ci LJ, Zhou ZP, Gao Y, Song L, Liu LF, Zhou WY, Wang G, Xie SS (2004) Growth of SnO2 nanowires with uniform branched structures. Solid State Commun 130:89–94

    Article  CAS  Google Scholar 

  • Wang J, Sun XW, Xie S, Zhou W, Yang Y (2008) Single-crystal and twinned Zn2SnO4 nanowires with axial periodical structures. Cryst Growth Des 8(2):707–710

    Article  CAS  Google Scholar 

  • Wei G, Qin W, Zhang D, Wang G, Kim R, Zheng K, Wang L (2009) Synthesis and field emission of MoO3 nanoflowers by a microwave hydrothermal route. J Alloys Comp 481:417–421

    Article  CAS  Google Scholar 

  • Wu Z-S, Pei S, Ren W, Tang D, Gao L, Liu B, Li F, Liu C, Cheng H-M (2009) Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv Mat 21:1756–1760

    Article  CAS  Google Scholar 

  • Yao I-C, Lin P, Tseng T-Y (2009) Nanotip fabrication of zinc oxide nanorods and their enhanced field emission properties. Nanotechnology 20:125202 (5 pp)

    Google Scholar 

  • Yuan ZJ, Gang LY, Lin SS, Guo WY, Hong WT (2008) Low-field electron emission from pinaster-like MoO2 nanoarrays as two-stage emitters. Chin Phys B 17(11):4333–4336

    Article  Google Scholar 

  • Zhang Q, Zhang Y, Yu K, Zhu Z (2008) Photoluminescence and field-emission characteristics of ZnO nanowires synthesized by two-step method. Vacuum 82(1):30–34

    Article  Google Scholar 

  • Zheng Z, Yan B, Zhang J, You Y, Lim CT, Shen Z, Yu T (2008) Potassium tungsten bronze nanowires: polarized micro-raman scattering of individual nanowires and electron field emission from nanowire films. Adv Mat 20(2):352–356

    Article  CAS  Google Scholar 

  • Zhong DY, Zhang GY, Liu S, Sakurai T, Wang EG (2002) Universal field-emission model for carbon nanotubes on a metal tip. Appl Phys Lett 80:506-1–506-3

    Google Scholar 

  • Zhou J, Xu NS, Deng SZ, Chen J, She JC, Wang ZL (2003a) Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties. Adv Mater 15(21):1835–1840

    Article  CAS  Google Scholar 

  • Zhou J, Deng SZ, Xu NS, Chen J, She JC (2003b) Synthesis and field-emission properties of aligned MoO3 nanowires. Appl Phys Lett 83(13):2653–2655

    Article  CAS  Google Scholar 

  • Zhou J, Gong L, Deng SZ, Chen J, She JC, Xu NS, Yang R, Wang ZL (2005) Growth and field-emission property of tungsten oxide nanotip arrays. Appl Phys Lett 87:223108-1–223108-3

    Google Scholar 

  • Zhou J, Deng S, Gong L, Ding Y, Chen J, Huang J, Chen J, Xu N, Wang ZL (2006) Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition: synthesis, growth mechanism, and device application. J Phys Chem B 110:10296–10302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Research and Technology Council of the Sharif University of Technology for the supporting the project. In addition, useful discussion with Dr. O. Akhavan and assistant of Mr. Rafiee for XPS measurements are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Z. Moshfegh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khademi, A., Azimirad, R., Nien, YT. et al. Field-emission enhancement of molybdenum oxide nanowires with nanoprotrusions. J Nanopart Res 13, 115–125 (2011). https://doi.org/10.1007/s11051-010-0009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0009-0

Keywords

Navigation