Skip to main content
Log in

Preparation of nanoparticles by continuous-flow microfluidics

  • FOCUS ON NANOMANUFACTURING
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham SA et al (2005) The liposomal formulation of doxorubicin. Methods Enzymol 391:71–97

    Article  CAS  Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  CAS  Google Scholar 

  • Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44(1):68–97

    Article  CAS  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82(3):364–366

    Article  CAS  Google Scholar 

  • Ayyagari AL et al (2006) Long-circulating liposomal contrast agents for magnetic resonance imaging. Mag Reson Med 55(5):1023–1029

    Article  CAS  Google Scholar 

  • Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298(4):1015–1019

    Article  CAS  Google Scholar 

  • Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36(6):213–215

    Article  CAS  Google Scholar 

  • Brazhnik KP et al (2005) Directed growth of pure phosphatidylcholine nanotubes in microfluidic channels. Langmuir 21(23):10814–10817

    Article  CAS  Google Scholar 

  • Chan EM, Alivisatos AP, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127(40):13854–13861

    Article  CAS  Google Scholar 

  • Chan EM, Mathies RA, Alivisatos AP (2003) Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett 3(2):199–201

    Article  CAS  Google Scholar 

  • Christopher GF et al (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336

    Article  CAS  Google Scholar 

  • Cottam BF et al (2007) Accelerated synthesis of titanium oxide nanostructures using microfluidic chips. Lab Chip 7(2):167–169

    Article  CAS  Google Scholar 

  • Crosasso P et al (2000) Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release 63(1–2):19–30

    Article  CAS  Google Scholar 

  • Dittrich PS et al (2006) On-chip extrusion of lipid vesicles and tubes through microsized apertures. Lab Chip 6(4):488–493

    Article  CAS  Google Scholar 

  • Edel JB et al (2002) Microfluidic routes to the controlled production of nanoparticles. Chem Commun 10:1136–1137

    Google Scholar 

  • Garstecki P et al (2006) Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab Chip 6(3):437–446

    Article  CAS  Google Scholar 

  • Gulsen D, Li CC, Chauhan A (2005) Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr Eye Res 30(12):1071–1080

    Article  CAS  Google Scholar 

  • Hung LH et al (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6(2):174–178

    Article  CAS  Google Scholar 

  • Ishida T, Harashima H, Kiwada H (2002) Liposome clearance. Biosci Rep 22(2):197–224

    Article  CAS  Google Scholar 

  • Jahn A et al (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23(11):6289–6293

    Article  CAS  Google Scholar 

  • Jahn A et al (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126(9):2674–2675

    Article  CAS  Google Scholar 

  • Jensen KF (2001) Microreaction engineering - is small better? Chem Eng Sci 56(2):293–303

    Article  CAS  Google Scholar 

  • Johnson TJ, Ross D, Locascio LE (2002) Rapid microfluidic mixing. Anal Chem 74(1):45–51

    Article  CAS  Google Scholar 

  • Kelly BT et al (2007) Miniaturizing chemistry and biology in microdroplets. Chem Commun (18):1773–1788

  • Khan SA et al (2004) Microfluidic synthesis of colloidal silica. Langmuir 20(20):8604–8611

    Article  CAS  Google Scholar 

  • Kikuchi H et al (1999) Gene delivery using liposome technology. J Control Release 62(1–2):269–277

    Article  CAS  Google Scholar 

  • Knight JB et al (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866

    Article  CAS  Google Scholar 

  • Kremer JMH et al (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16(17):3932–3935

    Article  CAS  Google Scholar 

  • Kuribayashi K et al (2006) Electroformation of giant liposomes in microfluidic channels. Meas Sci Technol 17(12):3121–3126

    Article  CAS  Google Scholar 

  • LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847–4854

    Article  CAS  Google Scholar 

  • Lasic DD (1988) The mechanism of vesicle formation. Biochem J 256(1):1–11

    CAS  Google Scholar 

  • Lin XZ, Terepka AD, Hong Y (2004) Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett 4(11):2227–2232

    Article  CAS  Google Scholar 

  • Lin Y-C, Li M, Wang Y-T, Lai T-H, Chaing J-T, Huang K-S (2005) A new method for the preparation of self-assembled phospholipid microtubes using microfluidic technology. Seoul, Korea, pp 1592–1595

  • Link DR et al (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):Art. No. 054503

  • Litzinger DC et al (1994) Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta Biomembr 1190(1):99–107

    Article  CAS  Google Scholar 

  • Luan WL et al (2007) Open-to-air synthesis of monodisperse CdSe nanocrystals via microfluidic reaction and its kinetics. Nanotechnology 18(17):175603 (6 pp)

    Google Scholar 

  • Mamot C et al (2003) Liposome-based approaches to overcome anticancer drug resistance. Drug Resist Updat 6(5):271–279

    Article  CAS  Google Scholar 

  • Martina MS et al (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127(30):10676–10685

    Article  CAS  Google Scholar 

  • Maulucci G et al (2005) Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J 88(5):3545–3550

    Article  CAS  Google Scholar 

  • Mayer LD et al (2000) Designing liposomal anticancer drug formulations for specific therapeutic applications. J Liposome Res 10(2–3):99–115

    Article  CAS  Google Scholar 

  • Medintz IL et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  CAS  Google Scholar 

  • Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  CAS  Google Scholar 

  • Mulder WJM et al (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19(1):142–164

    Article  CAS  Google Scholar 

  • Nakamura H et al (2004) Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis. Lab Chip 4(3):237–240

    Article  CAS  Google Scholar 

  • Pavelic Z et al (2005) Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J Control Release 106(1–2):34–43

    Article  CAS  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117

    Article  CAS  Google Scholar 

  • Ramachandran S et al (2006) Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence Imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. Langmuir 22(19):8156–8162

    Article  CAS  Google Scholar 

  • Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2(7):781–784

    Article  CAS  Google Scholar 

  • Sadava D, Coleman A, Kane SF (2002) Liposomal daunorubicin overcomes drug resistance in human breast, ovarian and lung carcinoma cells. J Liposome Res 12(4):301–309

    Article  CAS  Google Scholar 

  • Saito R et al (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196(2):381–389

    Article  CAS  Google Scholar 

  • Schmid MH, Korting HC (1994) Liposomes - a drug carrier system for topical treatment in dermatology. Crit Rev Ther Drug Carrier Syst 11(2–3):97–118

    CAS  Google Scholar 

  • Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4(4):316–321

    Article  CAS  Google Scholar 

  • Sounart TL et al (2007) Spatially-resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor. Lab Chip 7(7):908–915

    Article  CAS  Google Scholar 

  • Stroock AD et al (2002) Chaotic mixer for microchannels. Science 295(5555):647–651

    Article  CAS  Google Scholar 

  • Sugiura S et al (2001a) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18):5562–5566

    Article  CAS  Google Scholar 

  • Sugiura S et al (2001b) Preparation characteristics of monodispersed water-in-oil emulsions using microchannel emulsification. J Chem Eng Japan 34(6):757–765

    Article  CAS  Google Scholar 

  • Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508

    Article  CAS  Google Scholar 

  • Templeton NS et al (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15(7):647–652

    Article  CAS  Google Scholar 

  • Thorsen T et al (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166

    Article  CAS  Google Scholar 

  • Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem Mater 13(11):3843–3858

    Article  CAS  Google Scholar 

  • Wagner A et al (2002) The crossflow injection technique: an improvement of the ethanol injection method. J Liposome Res 12(3):259–270

    Article  CAS  Google Scholar 

  • Wang HZ et al (2004) Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor. Chem Commun (1):48–49

  • Wang HZ et al (2002) Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem Commun (14):1462–1463

  • Wu L et al (2006) Droplet formation in microchannels under static conditions. Appl Phys Lett 89(14):Art. No. 144106

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Jahn.

Additional information

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States of America.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahn, A., Reiner, J.E., Vreeland, W.N. et al. Preparation of nanoparticles by continuous-flow microfluidics. J Nanopart Res 10, 925–934 (2008). https://doi.org/10.1007/s11051-007-9340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9340-5

Keywords

Navigation