Skip to main content
Log in

Investigation of transition metal ion doping behaviors on TiO2 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this research, we have studied the doping behaviors of eight transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, adsorption spectra, anatase fraction, and photoreactivity of TiO2 nanoparticles. The pristine and ion-doped TiO2 nanoparticles of 15.91-25.47 nm were prepared using sol–gel method. Test metal ion concentrations ranged from 0.00002 to 0.2 at.%. The absorption spectra of the TiO2 nanoparticles were characterized using UV-Visible spectrometer. The wavelength of the absorption edge of TiO2 was estimated using the spectra derivative-tangent method. The photoreactivities of pristine and ion-doped TiO2 nanoparticles under UV irradiation were quantified by the decoloring rate of methyl orange. XRD patterns were recorded using a Rigaku D/MAX-2500 V diffractometer with Cu Kα radiation (50 kV and 250 mA), and particle size and anatase fraction were calculated. Results reveal that different ion doping exhibited complex effects on the studied characteristics of TiO2 nanoparticles. In general, red shift occurred to ion-doped TiO2 nanoparticles, but still with higher TiO2 photoreactivities when doped with Fe3+ and Ni2+ ions. Among the ions investigated, Ni-doped TiO2 nanoparticles have shown highest photoreactivity at the concentration of 0.002 at.%, about 1.9 times that of the pristine TiO2. Ion doping was shown to reduce the diameter and influence the fraction of anatase. Data also indicated that the combination of anatase diameter and ion radius might play an important role in the photoreactivity of TiO2 nanoparticles. This investigation contributes to the understanding of complex ion doping effects on TiO2 nanoparticles, and provides references for enhancing their environmental application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anpo M (1997) Photocatalysis on titanium oxide catalysts: approaches in achieving highly efficient reactions and realizing the use of visible light. Catal Surv Jpn 1:169–179

    Article  CAS  Google Scholar 

  • Anpo M (2000) Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure Appl Chem 72:1787–1792

    Article  CAS  Google Scholar 

  • Anpo M, Dohshi S, Kitano M, Hu Y, Takeuchi M, Matsuoka M (2005) The preparation and characterization of highly efficient titanium oxide–based photofunctional materials. Annu Rev Mater Res 35:1–27

    Article  CAS  Google Scholar 

  • Chen L, Chou T-C, (1994) Photodecolorization of methyl orange using silver ion modified TiO2 as photocatalyst. Ind Eng Chem Res 33:1436–1443

    Article  CAS  Google Scholar 

  • Cheng H, Ma J, Zhao Z, Qi L (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7: 663–671

    Article  CAS  Google Scholar 

  • Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Ireland JC, Klostermann P, Rice EW, Clark RM (1993) Inactivation of Escherichia coli by titanium-dioxide photocatalytic oxidation. Appl Environ Microbiol 59:1668–1670

    CAS  Google Scholar 

  • Kim S, Hwang S-J, Choi W (2005) Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem 109:24260–24267

    CAS  Google Scholar 

  • Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    CAS  Google Scholar 

  • Martin ST, Morrison CL, Hoffmann MR (1994) Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. J Phys Chem 98:13695–13704

    Article  CAS  Google Scholar 

  • Moon J, Takagi H, Fujishiro Y, Awano M (2001) Preparation and characterization of the Sb-doped TiO2 photocatalysts. J Mater Sci 36:949–955

    Article  CAS  Google Scholar 

  • Moser J, Grätzel M, Gallay R (2004) Inhibition of electron-hole recombination in substitutionally doped colloidal semiconductor crystallites. Helv Chim Acta 70:1596–1604

    Article  Google Scholar 

  • Ovenstone J (2001) Preparation of novel titania photocatalysts with high activity. J Mater Sci 36:1325–1329

    Article  CAS  Google Scholar 

  • Paola AD, Ikeda S, Marcì G, Ohtani B, Palmisano L (2001) Transition metal doped TiO2: physical properties and photocatalytic behaviour. Int J Photoenergy 3:171–176

    Article  Google Scholar 

  • Serpone N, Lawless D, Disdier J, Herrmann JM (1994) Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10:643–652

    Article  CAS  Google Scholar 

  • Shah SI, Li W, Huang C-P, Jung O, Ni C (2002) Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. PNAS 99:6482–6486

    Article  CAS  Google Scholar 

  • Shannon RD, Pask JA (1965) Kinetics of the anatase-rutile transformation, J Am Ceram Soc 48:391–398

    Article  CAS  Google Scholar 

  • Talsky G (1994) Derivative spectrophotometry. VCH Verlagsgesellschaft mbH, München, Germany

    Google Scholar 

  • Wang J, Guo B, Zhang X, Zhang Z, Han J, Wu J (2005a) Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase. Ultrason Sonochem 12:331–337

    Article  CAS  Google Scholar 

  • Wang XH, Li J-G, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T (2005b) Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties. J Am Chem Soc 127:10982–10990

    Article  CAS  Google Scholar 

  • Wang Y, Hao Y, Cheng H, Ma J, Xu B, Li W, Cai S (1999) The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode. J Mater Sci 34:2773–2779

    Article  CAS  Google Scholar 

  • Wei C, Lin W-Y, Zainal Z, Williams NE, Zhu K, Krurlc AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28:934–938

    Article  CAS  Google Scholar 

  • Wold A (1993) Photocatalytic properties of TiO2. Chem Mater 5:280–283

    Article  CAS  Google Scholar 

  • Xie Y, Li P, Yuan C (2002) Visible-light excited photocatalytic activity of rare earth metal-ion-doped titania. J Rare Earths 20:619–625

    Google Scholar 

Download references

Acknowledgment

This research was funded by National Natural Science Foundation of The People’s Republic of China. The authors are thankful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maosheng Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Yao, M. & Wang, X. Investigation of transition metal ion doping behaviors on TiO2 nanoparticles. J Nanopart Res 10, 163–171 (2008). https://doi.org/10.1007/s11051-007-9237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9237-3

Keywords

Navigation