Skip to main content
Log in

m-Asynchronous cellular automata: from fairness to quasi-fairness

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

A new model for the study of asynchronous cellular automata dynamical behavior is introduced with the main purpose of unifying several existing paradigms. The main idea is to measure the set of updating sequences to quantify the dependency of the properties under investigation from them. We propose to use the class of quasi-fair measures, namely measures that satisfy some fairness conditions on the updating sequences. Basic set properties like injectivity and surjectivity are adapted to the new setting and studied. In particular, we prove that they are dimensions sensitive properties (i.e., they are decidable in dimension 1 and undecidable in higher dimensions). A first exploration of dynamical properties is also started, some results about equicontinuity and expansivity behaviors are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acerbi L, Dennunzio A, Formenti E (2009) Conservation of some dynamical properties for operations on cellular automata. Theor Comput Sci 410(38–40):3685–3693

    Article  MathSciNet  MATH  Google Scholar 

  • Acerbi L, Dennunzio A, Formenti E (2013) Surjective multidimensional cellular automata are non-wandering: a combinatorial proof. Inf Process Lett 113(5–6):156–159

    Article  MathSciNet  MATH  Google Scholar 

  • Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. J Comput Syst Sci 6:448–464

    Article  MathSciNet  MATH  Google Scholar 

  • Bersini H, Detours V (1994) Asynchrony induces stability in cellular automata based models. In: Proceedings of artificial life IV. MIT Press, Cambridge, pp 382–387

  • Blanchard F, Cervelle J, Formenti E (2005) Some results about the chaotic behavior of cellular automata. Theor Comput Sci 349(3):318–336

    Article  MathSciNet  MATH  Google Scholar 

  • Buvel RL, Ingerson TE (1984) Structure in asynchronous cellular automata. Phys D 1:59–68

    MathSciNet  Google Scholar 

  • Cantelli FP (1917) Sulla probabilità come limite della frequenza. Rend Accad Lincei 24:39–45

    Google Scholar 

  • Cattaneo G, Dennunzio A, Margara L (2002) Chaotic subshifts and related languages applications to one-dimensional cellular automata. Fundam Inform 52:39–80

    MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Dennunzio A, Margara L (2004) Solution of some conjectures about topological properties of linear cellular automata. Theor Comput Sci 325:249–271

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Dennunzio A, Farina F (2006) A full cellular automaton to simulate predator–prey systems. In: Yacoubi El, Chopard B, Bandini S (eds) ACRI. Lecture notes in computer science, vol 4173. Springer, Berlin, pp 446–451

  • Cattaneo G, Dennunzio A, Formenti E, Provillard J (2009) Non-uniform cellular automata. In: LATA. Lecture notes in computer science, vol 5457. Springer, Berlin, pp 302–313

  • Chaudhuri P, Chowdhury D, Nandi S, Chattopadhyay S (1997) Additive cellular automata theory and applications, vol 1. IEEE Press, New York

    MATH  Google Scholar 

  • Chopard B (2012) Cellular automata and lattice boltzmann modeling of physical systems. In: Rozenberg G et al (ed) Handbook of natural computing. Springer, Berlin, pp 287–331

    Chapter  Google Scholar 

  • Dennunzio A (2012) From one-dimensional to two-dimensional cellular automata. Fundam Inform 115:87–105

    MathSciNet  MATH  Google Scholar 

  • Dennunzio A, Formenti E (2008) Decidable properties of 2D cellular automata. In: 12th conference on developments in language theory (DLT 2008). Lecture notes in computer science, vol 5257. Springer, Berlin, pp 264–275

  • Dennunzio A, Guillon P, Masson B (2008) Stable dynamics of sand automata. In: IFIP TCS. IFIP, vol 273. Springer, Berlin, pp 157–169

  • Dennunzio A, Di Lena P, Formenti E, Margara L (2009a) On the directional dynamics of additive cellular automata. Theor Comput Sci 410:4823–4833

    Article  MathSciNet  MATH  Google Scholar 

  • Dennunzio A, Guillon P, Masson B (2009b) Sand automata as cellular automata. Theor Comput Sci 410:3962–3974

    Article  MathSciNet  MATH  Google Scholar 

  • Dennunzio A, Formenti E, Kůrka P (2012a) Cellular automata dynamical systems. In: Rozenberg G et al (ed) Handbook of natural computing. Springer, Berlin, pp 25–75

    Chapter  Google Scholar 

  • Dennunzio A, Formenti E, Manzoni L (2012b) Computing issues of asynchronous ca. Fundam Inform 120(2):165–180

    MathSciNet  MATH  Google Scholar 

  • Dennunzio A, Formenti E, Manzoni L, Mauri G (2012c) m-asynchronous cellular automata. In: Sirakoulis GCh, Bandini S (eds) ACRI. Lecture notes in computer science, vol 7495. Springer, Berlin, pp 653–662

  • Dennunzio A, Formenti E, Provillard J (2012d) Non-uniform cellular automata: classes, dynamics, and decidability. Inf Comput 215:32–46

    Article  MathSciNet  MATH  Google Scholar 

  • Dennunzio A, Di Lena P, Formenti E, Margara L (2013a) Periodic orbits and dynamical complexity in cellular automata. Fundam Inform 126:183–199

    Google Scholar 

  • Dennunzio A, Formenti E, Provillard J (2013b) Local rule distributions, language complexity and non-uniform cellular automata. Theor Comput Sci (in press)

  • Dennunzio A, Formenti E, Weiss M (2013c) Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues. Theor Comput Sci (to appear)

  • Farina F, Dennunzio A (2008) A predator–prey cellular automaton with parasitic interactions and environmental effects. Fundam Inform 83(4):337–353

    MathSciNet  MATH  Google Scholar 

  • Fatès N, Morvan M (2005) An experimental study of robustness to asynchronism for elementary cellular automata. Complex Syst 16(1):1–27

    Google Scholar 

  • Fatès N, Morvan M, Schabanel N, Thierry E (2006) Fully asynchronous behaviour of double-quiescent elementary cellular automata. Theor Comput Sci 362:1–16

    Article  MATH  Google Scholar 

  • Fatès N, Regnault D, Schabanel N, Thierry E (2006) Asynchronous behaviour of double-quiescent elementary cellular automata. In: Proceedings of LATIN ’2006. Lecture notes in computer science, vol 3887. Springer, Berlin, pp 455–466

  • Fukś H (2002) Non-deterministic density classification with diffusive probabilistic cellular automata. Phys Rev E 66(2):066106

    Google Scholar 

  • Fukś H (2004) Probabilistic cellular automata with conserved quantities. Nonlinearity 17(1):159–173

    Article  MathSciNet  MATH  Google Scholar 

  • Halmos PR (1974) Measure theory. Graduate texts in mathematics, vol 38. Springer, Berlin

  • Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375

    Article  MathSciNet  MATH  Google Scholar 

  • Kari J (1994) Reversibility and surjectivity problems of cellular automata. J Comput Syst Sci 48(1):149–182

    Article  MathSciNet  MATH  Google Scholar 

  • Kier LB, Seybold PG, Cheng C-K (2005) Modeling chemical systems using cellular automata. Springer, Berlin

    Google Scholar 

  • Lee J, Adachi S, Peper F, Mashiko S (2005) Delay-insensitive computation in asynchronous cellular automata. J Comput Syst Sci 70:201–220

    Article  MathSciNet  MATH  Google Scholar 

  • Lumer ED, Nicolis G (1994) Synchronous versus asynchronous dynamics in spatially distributed systems. Phys D 71:440–452

    Article  MATH  Google Scholar 

  • Macauley M, McCammond J, Mortveit HS (2008) Order independence in asynchronous cellular automata. J Cell Autom 3(1):37–56

    MathSciNet  MATH  Google Scholar 

  • Manzoni L (2012) Asynchronous cellular automata and dynamical properties. Nat Comput 11(2):269–276

    Article  MathSciNet  Google Scholar 

  • Nakamura K (1974) Asynchronous cellular automata and their computational ability. Syst Comput Control 5:58–66

    Google Scholar 

  • Regnault D (2006) Abrupt behaviour changes in cellular automata under asynchronous dynamics. In: Electronic proceedings of 2nd European conference on complex systems, ECCS, Oxford, 2006

  • Regnault D, Schabanel N, Thierry E (2009) Progresses in the analysis of stochastic 2D cellular automata: a study of asynchronous 2D minority. Theor Comput Sci 410:4844–4855

    Article  MathSciNet  MATH  Google Scholar 

  • Schönfisch B, de Roos A (1999) Synchronous and asynchronous updating in cellular automata. BioSystems 51:123–143

    Article  Google Scholar 

  • Worsch T (2010) A note on (intrinsically?) universal asynchronous cellular automata. In: Proceedings of automata 2010, 14–16 June 2010, Nancy, pp 339–350

Download references

Acknowledgments

This work has been partially supported by the French National Research Agency project EMC (ANR-09-BLAN-0164) and by the Italian PRIN 2010-2011/MIUR project “Automata and Formal Languages: Mathematical and Applicative Aspects”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Dennunzio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennunzio, A., Formenti, E., Manzoni, L. et al. m-Asynchronous cellular automata: from fairness to quasi-fairness. Nat Comput 12, 561–572 (2013). https://doi.org/10.1007/s11047-013-9386-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-013-9386-5

Keywords

Navigation