A review of particle swarm optimization. Part I: background and development
 Alec Banks,
 Jonathan Vincent,
 Chukwudi Anyakoha
 … show all 3 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
Particle Swarm Optimization (PSO), in its present form, has been in existence for roughly a decade, with formative research in related domains (such as social modelling, computer graphics, simulation and animation of natural swarms or flocks) for some years before that; a relatively short time compared with some of the other natural computing paradigms such as artificial neural networks and evolutionary computation. However, in that short period, PSO has gained widespread appeal amongst researchers and has been shown to offer good performance in a variety of application domains, with potential for hybridisation and specialisation, and demonstration of some interesting emergent behaviour. This paper aims to offer a compendious and timely review of the field and the challenges and opportunities offered by this welcome addition to the optimization toolbox. Part I discusses the location of PSO within the broader domain of natural computing, considers the development of the algorithm, and refinements introduced to prevent swarm stagnation and tackle dynamic environments. Part II considers current research in hybridisation, combinatorial problems, multicriteria and constrained optimization, and a range of indicative application areas.
 Afshinmanesh F, Marandi A, RahimiKian A (2005) A novel binary particle swarm optimization method using artificial immune system. EuroCon 2005 – The international conference on computer as a tool, Serbia & Montenegro, Belgrade
 Alkazemi B, Mohan CK (2002) Multiphase Discrete Particle Swarm Optimization. Proceedings of fourth international workshop on frontiers in evolutionary algorithms (FEA 2002)
 Angeline PJ (1998a) Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. 7th Annual conf evolutionary programming
 Angeline PJ (1998b) Using Selection to Improve Particle Swarm Optimization. Proceedings of IEEE congress on evolutionary computation, Anchorage, Alaska
 Blackwell TM, Bentley PJ (2002) Dynamic search with charged swarms. Proceedings of the genetic and evolutionary computation conference 2002 (GECCO 2002), New York, NY, USA, pp 19–26
 Bremermann HJ (1958) The evolution of intelligence. The Nervous System as a Model of its Environment. Technical report, no 1, contract no 477(17), Dept Mathematics, Univ Washington, Seattle, July, 1958
 Calude CS, Paun G, Tataram M (2001) A Glimpse into natural computing. CDMTCS Tech Rep 117, Univ of Auckland, 2000 and J MultiValuate Logic 7:1–28
 CantúPaz E (2000) Efficient and accurate parallel genetic algorithms. Kluwer Academic Publishers
 Carlisle A, Dozier G (2000) Adapting particle swarm optimization to dynamic environments. Proceedings of international conference on artificial intelligence, vol 1, pp 429–434, Las Vegas, NV
 Carlisle A, Dozier G (2001a) Tracking changing extrema with particle swarm optimizer. Auburn University Technical Report CSSE0108
 Carlisle A, Dozier G (2001b) An OffTheShelf PSO. Proceedings of workshop on particle swarm optimization. Indianapolis, IN
 Carlisle A, Dozier G (2002) Tracking changing extrema with adaptive particle swarm optimizer. Proceeding of WAC 2002, Orlando, Florida
 Chang JF, Chu SC, Roddick JF, Pan JS (2005) A parallel particle swarm optimization algorithm with communication strategies. J Information Sci Eng 21:809–818
 Clerc M, Kennedy J (2002) The particle swarm: explosion, stability and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73 CrossRef
 Clerc M (2003) TRIBES – Un Exemple D’Optimisation par Essaim Particulaire Sans Parametres de Contrôle. In: Optimisation par Essaim Particulaire (OEP 2003), Paris, France
 Colorni A, Dorigo M, Maniezzo V (1991) Distributed Optimization by Ant Colonies. Proceedings of European conference on artificial life, Paris, France, pp 134–142
 Cui X, Hardin CT, Ragade RK, Potok TE, Elmagraghby AS (2005) Tracking nonstationary optimal solution by particle swarm optimizer. Proceedings of the sixth international conference on software engineering, artificial intelligence, networking and parallel/distributed computing and first acis international workshop on selfassembling wireless networks (SNPD/SAWN’05)
 Di Caro G, Dorigo M (1998) AntNet: Distributed Stigmergetic Control for Communications Networks. J Artificial Intelligence Res (JAIR) 9:317–365
 Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press
 Eberhart RC, Simpson P, Dobbins R (1996) Computational intelligence PC tools. AP Professional, San Diego, CA, Chapter 6, pp 212–226
 Eberhart RC, Shi Y (2000) Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. Proceedings of IEEE congress evolutionary computation, San Diego, CA, pp 84–88
 Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic systems with particle swarms. Proceedings of the 2001 congress on evolutionary computation, vol 1, pp 94–100
 Feigenbaum EA, Buchanan BG, Lederberg J (1971) On Generality and Problem Solving: A Case Study using the DENDRAL Program. In: Meltzer B, Michie D (eds) Machine Intelligence, 6th edn. American Elsevier, New York, pp 165–190
 Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence thorough simulated evolution. John Wiley & Sons, Ltd, Chichester, UK
 Friedberg RM (1958) A learning machine: Part I. IBM J 2–13
 Gehlhaar DK, Fogel DB (1996) Tuning evolutionary programming for conformationally flexible molecular docking. In: Evolutionary programming: proceedings of the fifth annual conference on evolutionary programming February 29–March 3, 1996, San Diego, California, pp 419–429
 Gies D, RahmatSamii Y (2003) Particle swarm optimization for reconfigurable phasedifferentiated array design. Microwave Opt Technol Lett 38(3):168–175 CrossRef
 Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley
 Haykin S (1999) Neural networks – a comprehensive foundation, 2nd edn. Pearson, Delhi, India
 Hebb DO (1949) The organization of behavior. Wiley, New York
 Heppner F, Grenander U (1990) A stochastic nonlinear model for coordinated bird flocks. In: Krasner S (eds) The ubiquity of chaos. AAAS Publications, Washington, DC
 Holland JH (1962) Outline for a logical theory of adaptive systems. J Assoc Comput Machinery 3:297–314
 Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbour
 Johnson S (2001) Emergence: the connected lives of ants, brains, cities, and software. Scribner, New York
 Kaewkamnerdpong B, Bentley P (2005) Perceptive particle swarm optimization. Proceedings of the seventh international conference on adaptive and natural computing algorithms (ICCANGA 2005)
 Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp 1942–1948
 Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. Proceedings of the conference on systems, man and cybernetics, Piscataway, New Jersey, pp 4104–4109
 Kennedy J (1997) The particle swarm: social adaptation of knowledge. Proceedings of international conference evolutionary computation, IEEE, pp 303–308, Piscataway, NJ
 Kennedy J (1999) Small Worlds and MegaMinds: Effects of Neighborhood Topology on Particle Swarm Performance. Proceedings of IEEE Congress on Evolutionary Computation, Piscataway, NJ
 Kennedy J (2000) Stereotyping: improving particle swarm performance with cluster analysis. Proceedings of IEEE congress on evolutionary computation, pp 1507–1512, San Diego, CA
 Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufman, San Francisco, USA
 Kennedy J, Mendes R (2002) Population structure and particle swarm performance. Proceedings of Congress on Evolutionary Computation 2:1671–1676
 Kennedy J (2003) Bare bones particle swarms. Proceedings of the IEEE swarm intelligence symposium 2003 (SIS 2003), Indianapolis, Indiana, USA, pp 80–87
 Koza J (1992) Genetic Programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA
 Krink T, Vestertroem JS, Riget J (2002) Particle swarm optimization with spatial particle extension. Proceedings of the IEEE congress on evolutionary computation (CEC 2002), Honolulu, Hawaii (2002)
 Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. Proceedings of the IEEE
 McCulloch WS, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity. Bull Mathematical Biophys 5:115–133 CrossRef
 Mendes R, Kennedy J, Neves J (2003) Watch thy neighbor or how the swarm can learn from its environment. Proceedings of IEEE swarm intelligence symposium, Indianapolis, Indiana, pp 88–94
 Minsky M (1986) The society of mind. Simon and Schuster, New York
 Monson CK, Seppi KD (2004) The Kalman swarm. Proceedings of the genetic and evolutionary computation conference (GECCO), Seattle, Washington
 Monson CK, Seppi KD (2005a) Bayesian optimization models for particle swarm. Proceedings of genetic and evolutionary computation conference (GECCO), ACM, Washington, DC
 Monson CK, Seppi KD (2005b) Improving on the Kalman swarm extracting its essential characteristics. Proceedings of genetic and evolutionary computation conference (GECCO), ACM, Washington, DC
 Nelder JA, Mead R (1965) A Simplex Method for Function Minimization. Computer J 7:308–313
 Ozcan E, Mohan CK (1998) Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems Through Artificial Neural Networks 253–258
 Ozcan E, Mohan CK (1999) Particle swarm optimization: surfing the waves. Proceedings of IEEE congress on evolutionary computation, Washington, DC
 Parrott D, Li X (2004) A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In: Proceeding of the 2004 congress on evolutionary computation (CEC’04), IEEE Service Center, Piscataway, NJ, pp 98–103, 088551331
 Parsopoulos KE, Vrahatis MN (2002) Initializing the particle swarm optimizer using the nonlinear simplex method. Advances in intelligent systems, fuzzy systems, evolutionary computation, pp 216–221
 Parsopoulos KE, Vrahatis MN (2004) UPSO: a unified particle swarm optimization scheme. In: Lecture series on computer and computational sciences, Proceedings of international conference on computational methods in sciences and engineering (ICCMSE 2004), VSP International Science Publishers, Zeist, The Netherlands, pp 868–873
 Parsopoulos KE, Vrahatis MN (2005a) Unified Particle Swarm Optimization in Dynamic Environments. In: Rothlauf F et al (eds) EvoWorkshops 2005, LNCS 3449, pp 590–599
 Parsopoulos KE, Vrahatis MN (2005b) Unified particle swarm optimization for tackling operations research problems. Proceedings swarm intelligence symposium SIS 2005, pp 53–59
 Ratnaweera A, Halgamuge SK, Watson HC (2004) Selforganising hierarchical particle swarm optimizer with timevarying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255 CrossRef
 Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Library Translation No 1122, August
 Reeves WT (1983) Particle systems – a technique for modeling a class of fuzzy objects. ACM Trans Graphics 2(2):91–108 CrossRef
 Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Computer Graphics 21(4):25–34 (Proc SIGGRAPH ’87) CrossRef
 Riget J, Vesterstrøm JS (2002) A diversityguided particle swarm optimizer – the ARPSO. EVALife Technical Report no 2002–2002
 Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. Proceedings of the IEEE international conference on evolutionary computation, pp 69–73. IEEE Press, Piscataway, NJ
 Schutte JF, Reinbolt JA, Fregly BJ, Haftka RT, George AD (2004) Parallel Global Optimization with the Particle Swarm Algorithm. Int J Numer Meth Eng 61(13):2296–2315, John Wiley and Sons Ltd, Great Britain
 Silva A, Neves A, Costa E (2002) An empirical comparison of particle swarm and predator prey optimization. In Proceedings of 13th Irish international conference on artificial intelligence and cognitive science 2464:103–110
 Sipper M, Sanchez E, Mange D, Tomassini M, PérezUribe A, Stauffer A (1998) An introduction to bioinspired machines. In: Mange D, Tomassini M (eds) Bioinspired computing machines towards novel computational architectures. Presses Polytechniques et Universitaires Romandes, Luasanne, Switzerland, pp 1–12
 Storn R, Price K (1995) Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report TR95012, ICSI Available from: http://http.icsi.berkeley.edu/∼storn/litera.html
 Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Lett 85:317–325 CrossRef
 Turing AM (1952) The chemical basis of morphogenesis. Philosophical Trans Royal Society of London, series B 641:237
 van den Bergh F, Engelbrecht AP (2002) A new locally convergent particle swarm optimizer. Proceedings of IEEE conference on systems, man and cybernetics, Hammamet, Tunisia
 Veeramachaneni K, Peram T, Mohan CK, Osadciw LA (2003) Optimization using particle swarms with near neighbor interactions. Proceedings of genetic and evolutionary computation conference (GECCO), LNCS 2723, Chicago, IL, pp 110–121
 Venter G, SobieszczanskiSobieski J (2005). A parallel particle swarm optimization algorithm accelerated by asynchronous evaluations. 6th world congresses of structural and multidisciplinary optimization. Rio de Janerio, Brazil, 30 May–03 June 2005
 Wolpert DH, Macready WG (1997) No Free Lunch Theorems for Optimization. IEEE Trans Evol Comput 1(1):67–82 CrossRef
 Xie XF, Zhang WJ, Yang ZL (2002) A dissipative particle swarm optimization. Congress on evolutionary computation, Honolulu, HI, USA, 2002:1456–1461
 Zhang L, Yu H, Hu S (2005) Optimal choice of parameters for particle swarm optimization. J Zhejiang Univ Sci 528–534
 Title
 A review of particle swarm optimization. Part I: background and development
 Journal

Natural Computing
Volume 6, Issue 4 , pp 467484
 Cover Date
 20071201
 DOI
 10.1007/s1104700790495
 Print ISSN
 15677818
 Online ISSN
 15729796
 Publisher
 Springer Netherlands
 Additional Links
 Topics
 Keywords

 Particle swarm optimization
 Natural computing
 Authors

 Alec Banks ^{(1)}
 Jonathan Vincent ^{(2)}
 Chukwudi Anyakoha ^{(2)}
 Author Affiliations

 1. Tornado InService Software Maintenance Team, Royal Air Force, Boscombe Down, Wiltshire, UK
 2. Software Systems Modelling Group, School of Design, Engineering and Computing, Bournemouth University, Poole, Dorset, UK