Skip to main content
Log in

Numerical analysis of the creep of the contact and recovery of the imprint on amorphous polymer surfaces

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This article attempts to analyze the viscoelastic behavior of an amorphous polymer during a microindentation test. The viscoelastic behavior of an amorphous polymer (poly(methyl methacrylate), PMMA) is derived from different relaxation tests performed under different applied true strains. A generalized Maxwell model is then used to identify the mechanical parameters of the viscoelastic behavior. The numerical results display good correlation with experiments during the creep phase. The uniaxial relaxation test used to identify the viscoelastic behavior is chosen in relation to the experimental conditions of indentation. The results obtained for the recovery phase allow a first analysis of the strain and von Mises equivalent stress fields during indentation test. The recovery of the imprint left on the surface seems to depend on the location of the strain maxima. If a strain level of 10 % or more reaches the surface of the deformed volume, a permanent imprint is obtained. Otherwise the residual imprint may be considered to be completely healed even if the subsurface has partially yielded during the loading phase or creep time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Briscoe, B.J., et al.: Scratching maps for polymers. Wear 200(1–2), 137–147 (1996)

    Article  Google Scholar 

  • Chatel, T., et al.: Creep of the contact with a spherical tip and recovery of the imprint on amorphous polymer surfaces. J. Phys. D, Appl. Phys. 44, 375403 (2011)

    Article  Google Scholar 

  • Cheng, L., et al.: Flat-punch indentation of viscoelastic material. J. Polym. Sci., Part B, Polym. Phys. 38(1), 10–22 (2000)

    Article  Google Scholar 

  • Cheng, L., et al.: Spherical-tip indentation of viscoelastic material. Mech. Mater. 37(1), 213–226 (2005)

    Article  Google Scholar 

  • Dooling, P.J., Buckley, C.P., Hinduja, S.: The onset of nonlinear viscoelasticity in multiaxial creep of glassy polymers: A constitutive model and its application to PMMA. Polym. Eng. Sci. 38(6), 892–904 (1998)

    Article  Google Scholar 

  • Galli, M., Oyen, M.L.: Creep properties from indentation tests by analytical and numerical techniques. Int. J. Mater. Res. 100(7), 954–959 (2009)

    Article  Google Scholar 

  • Hertz, H.: Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1881)

    Google Scholar 

  • Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  • Kameda, J., Yokoyama, Y., Allen, T.R.: Strain-controlling mechanical behavior in noncrystalline materials I: Onset of plastic deformation. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 448(1–2), 235–241 (2007)

    Article  Google Scholar 

  • Le Houérou, V.: Scratchability of soda-lime silica glasses. Ph.D. thesis, University of Rennes, France (2005)

  • Lee, E.H., Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438–444 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, H., et al.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7(3–4), 189–207 (2003)

    Article  Google Scholar 

  • Marano, C., Rink, M.: Shear yielding threshold and viscoelasticity in an amorphous glassy polymer: A study on a styrene-acrylonitrile copolymer. Polymer 42(5), 2113–2119 (2001)

    Article  Google Scholar 

  • Pelletier, C.G.N., et al.: Quantitative assessment and prediction of contact area development during spherical tip indentation of glassy polymers. Philos. Mag. 88(9), 1291–1306 (2008)

    Article  Google Scholar 

  • Pelletier, H., et al.: Viscoelastic and elastic-plastic behaviors of amorphous polymeric surfaces during scratch. Tribol. Int. 41(11), 975–984 (2008)

    Article  Google Scholar 

  • Samyn, P., et al.: Full-scale analysis of deformation and stress distribution for constrained composite bearing elements under compressive yielding conditions. Mater. Des. 28(9), 2450–2470 (2007)

    Article  Google Scholar 

  • Tabor, D.: The hardness of solids. Rev. Phys. Technol. 1, 145–179 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gauthier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatel, T., Le Houérou, V., Pelletier, H. et al. Numerical analysis of the creep of the contact and recovery of the imprint on amorphous polymer surfaces. Mech Time-Depend Mater 17, 581–595 (2013). https://doi.org/10.1007/s11043-012-9205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9205-x

Keywords

Navigation