Skip to main content
Log in

A personalized system for scalable distribution of multimedia content in multicast wireless networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel architecture for scalable multimedia content delivery over wireless networks. The architecture takes into account both the user preferences and context in order to provide personalized contents to each user. In this way, third-party applications filter the most appropriate contents for each client in each situation. One of the key characteristics of the proposal is the scalability, which is provided, apart from the use of filtering techniques, through the transmission in multicast networks. In this sense, content delivery is carried out by means of the FLUTE (File Delivery over Unidirectional Transport) protocol, which provides reliability in unidirectional environments through different mechanisms such as AL-FEC (Application Layer – Forward Error Correction) codes, used in this paper. Another key characteristic is the context-awareness and personalization of content delivery, which is provided by means of context information, user profiles, and adaptation. The system proposed is validated through several empirical studies. Specifically, the paper presents evaluations of two types that collect objective and subjective measures. The first evaluate the efficiency of the transmission protocol, analyzing how the use of appropriate transmission parameters reduces the download time (and thus increasing the Quality of Experience), which can be minimized by using caching techniques. On the other hand, the subjective measures present a study about the user experience after testing the application and analyze the accuracy of the filtering process/strategy. Results show that using AL-FEC mechanisms produces download times until four times lower than when no protection is used. Also, results prove that there is a code rate that minimizes the download time depending on the losses and that, in general, code rates 0.7 and 0.9 provide good download times for a wide range of losses. On the other hand, subjective measures indicate a high user satisfaction (more than 80 %) and a relevant degree of accuracy of the content adaption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. AdAdge (2013) A majority of U.S. mobile users are now smartphone users. Available at: http://adage.com/article/digital/a-majority-u-s-mobile-users-smartphone-users/241717. Accessed November 2013

  2. Adomavicius G, Tuzhilin E (2005) Toward the next generation of recommender Systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17:734–749

    Article  Google Scholar 

  3. Adomavicius G, Tuzhilin A (2010) Context-aware recommender systems. Recommender Systems Handbook (Chapter 7): 217–253

  4. Androjena, Jena Android Porting (2013). Available at: https://code.google.com/p/androjena. Accessed December 2013

  5. Anind KD (2001) Understanding and Using Context. Personal Ubiquitous Comput 5:4–7

    Article  Google Scholar 

  6. Assad M, Carmichael DJ, Kay J, Kummerfeld B (2007) PersonisAD: distributed, active, scrutable model framework for context-aware services. Proc. of Pervasive Computing, Toronto, Canada:55–72

  7. Bai H, Atiquzzaman M (2003) Error modeling schemes for fading channels in wireless communications: a survey. IEEE Communications Surveys and Tutorials 5(2):2–9

    Article  Google Scholar 

  8. Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context-aware systems. Int. J. AdHoc and Ubiquitous Computing, Springer-Verlag 2:263–277

    Google Scholar 

  9. Barquero D, Bria A (2007) Forward Error Correction file delivery in DVB-H. Proc. of IEEE Vehicular Technology Conference (VTC), Dublin, Ireland:2951–2955

  10. Bright A, Kay J, Ler D, Ngo K, Niu W, Nuguid A (2005) Adaptively recommending museum tours. Proc. of the UbiComp Workshop on Smart Environments and their Applications to Cultural Heritage, Tokyo, Japan:29–32

  11. Chatfield C, Carmichael D, Hexel R, Kay J, Kummerfeld B (2005) Personalisation in intelligent environments: managing the information flow. Proc. of the OZCHI Computer-human interaction, Canberra, Australia:1–10

  12. Chen YFR, Jana R, Stern D, Wei B, Yang M, Sun H, Dyaberi J (2010) Zebroid: using IPTV data to support STB-assisted VoD content delivery. Multimedia System Journal 16(3):199–214

    Article  Google Scholar 

  13. Chen G, Kotz D (2000) A survey on context-aware mobile computing research. Technical Report TR2000-381, Dartmouth Computer Science

  14. Community Research and Development Information Service (CORDIS) – Seventh Framework Programme (FP7). Available at: http://cordis.europa.eu/fp7/home_en.html. Accesed October 2013

  15. de Fez I, Fraile F, Belda R, Guerri JC (2011) Performance evaluation of AL-FEC LDPC codes for push content applications in wireless unidirectional environments. Multimedia Tools and Applications 60(3):669–688

    Article  Google Scholar 

  16. de Fez I, Fraile F, Belda R, Guerri JC (2012) Analysis and evaluation of adaptive LDPC AL-FEC codes for content download services. IEEE Transactions on Multimedia 14(3):641–650

    Article  Google Scholar 

  17. de Fez I, Fraile F, Guerri JC (2013) Effect of the FDT transmission frequency for an optimum content delivery using the FLUTE protocol. Computer Communications 36(12):1298–1309

    Article  Google Scholar 

  18. de Fez I, Guerri JC (2014) An adaptive mechanism for optimal content download in wireless networks. IEEE Transactions on Multimedia 16(4):1140–1155

  19. Du R, Safavi-Naini R, Susilo W (2003) Web filtering using text classification (2003). Proc. of the Int Conf on Networks (ICON), Sydney, Australia:325–330

  20. ETSI TS 102 034 (2008), Transport of MPEG-2 TS Based DVB Services over IP based Networks (and associated XML), v1.4.1, available online: www.etsi.org/deliver/etsi_ts/102000_102099/102034/01.04.01_60/ts_102034v010401p.pdf

  21. ETSI TS 102 472 (2009), Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content Delivery Protocols, v1.3.1, available online: www.etsi.org/deliver/etsi_ts/102400_102499/102472/01.03.01_60/ts_102472v010301p.pdf

  22. ETSI TS 126 346 (2013), Universal Mobile Telecommunications System (UMTS); LTE; Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs (release 10), v11.3.0, available online: www.etsi.org/deliver/etsi_ts/126300_126399/126346/11.03.00_60/ts_126346v110300p.pdf

  23. Felfernig A, Jeran M, Ninaus G, Reinfrank F, Reiterer S (2013) Toward the next generation of recommender systems: applications and research challenges. Multimedia Services in Intelligent Environments 24 (Chapter 5): 81–98

  24. Fraile F, de Fez I, Guerri JC (2009) Modela-TV: service personalization and business model management for mobile TV. Proc. of 7th European Interactive TV Conference (EuroITV), Leuven, Belgium:1–6

  25. Fraile F, de Fez I, Guerri JC (2014) Evaluation of background push content download services to mobile devices over DVB networks. IEEE Transactions on Broadcasting 60(1):1–15

    Article  Google Scholar 

  26. Gallager RG (1962) Low density parity check codes. IRE Transactions on Information Theory 8(1):21–28

    Article  MathSciNet  MATH  Google Scholar 

  27. Gil M, Giner P, Pelechano V (2012) Personalization for unobtrusive service interaction. Personal Ubiquitous Comput 16(5):543–561

    Article  Google Scholar 

  28. Guillen J, Miranda J, Berrocal J, Garcia-Alonso J, Murillo J, Canal C (2014) People as a service: a mobile-centric model for providing collective sociological profiles. IEEE Software 31(2):48–53

    Article  Google Scholar 

  29. Hrvoje J, Stockhammer T, Xu W, Abdel Samad W (2006) Efficient video-on-demand services over mobile datacast channels. Journal of Zhejiang University 7(5):873–884

    Article  MATH  Google Scholar 

  30. Hsieh CC, Lin CH, Chang WT (2009) Design and implementation of the interactive multimedia broadcasting services in DVB-H. IEEE Transactions on Consumer Electronics 55(4):1779–1787

    Article  Google Scholar 

  31. Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer

  32. Korpipaa P, Malm EJ, Rantakokko T, Kyllonen V, Kela J, Mantyjarvi J, Hakkila J, Kansala I (2006) Customizing user interaction in smart phones. IEEE Pervasive Computing 5:82–90

    Article  Google Scholar 

  33. Kuppusamy KS, Aghila G (2012) A personalized web page content filtering model based on segmentation. Int Journal of Information Sciences and Techniques (IJIST) 2(1):41–51

    Article  Google Scholar 

  34. Kutscher D, Greifenberg J, Loos K (2007) Scalable DTN distribution over uni-directional links. Proc. of the SIGCOMM workshop on networked systems in developing regions (NSDR), Kyoto, Japan: article no. 6

  35. Lewis JR (1995) Ibm computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int J Hum Comput Interact 7(1):57–78

    Article  Google Scholar 

  36. Liang L, Cruichkshank H, Sun Z, Kulatunga C, Fairhurst G (2010) The integration of TESLA and FLUTE over satellite networks. Proc. of the IEEE Global Telecommunications Conference (Globecom), Miami, FL, USA:1–6

  37. Lohmar T, Huschke J (2009) Radio resource optimization for MBMS file transmissions. Proc. of the IEEE Int Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Bilbao, Spain:1–7

  38. Neumann C, Roca V, Walsh R (2005) Large scale content distribution protocols. ACM Computer Communication Review 35(5):85–92

    Article  Google Scholar 

  39. Paila T, Walsh R, Luby M, Roca V, Lehtonen R (2012) FLUTE – File Delivery Over Unidirectional Transport. IETF RFC 6726

  40. Paolini E, Varrella M, Chiani M, Matuz B, Liva G (2008) Low-complexity LDPC codes with near-optimum performance over the BEC. Proc. Adv Satellite Mobile Systems (ASMS), Bologna, Italy:274–282

  41. Papastergiou G, Psaras I, Tsaoussidis V (2009) Deep-space transport protocol: a novel transport scheme for space DTNs. Computer Communications 32(16):1757–1767

    Article  Google Scholar 

  42. Peltotalo J, Harju J, Saukko M, Väätämöinen L, Bouazizi I, Curcio I (2008) Personal mobile broadcasting based on the 3GPP MBMS System. Proc. of MoMM, Linz, Austria:156–162

  43. Peltotalo J, Peltotalo S, Harju J, Walsh R (2007) Performance analysis of a file delivery system based on the FLUTE protocol. Int Journal of Communication Systems 20(6):633–659

    Article  Google Scholar 

  44. Podlipnig S, Böszörmenyi L (2003) A survey of web cache replacement strategies. ACM Computing Surveys 35(4):374–398

    Article  Google Scholar 

  45. Roca V, Neumann C, Furodet D (2008) Low density parity check (LDPC) staircase and triangle forward error correction (FEC) schemes. IETF RFC 5170

  46. Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineering. Empir Softw Eng 14(2):131–164

    Article  Google Scholar 

  47. Schiller JH, Voisard A (2004) Location-based services. Kaufmann, Morgan

    Google Scholar 

  48. Serral E, Gil M, Valderas P, Pelechano V (2013) Automating unobtrusive personalized services in ambient media environments. Multimedia Tools and Applications, Springer US, available online, doi: 10.1007/s11042-013-1634-2

  49. Serral E, Valderas P, Pelechano V (2010) Towards the model driven development of context-aware pervasive systems. Pervasive and Mobile Computing 6(2):254–280

    Article  Google Scholar 

  50. Streefkerk JW, van Esch-Bussemakers MP, Neerincx MA (2006) Designing personal attentive user interfaces in the mobile public safety domain. Comput Hum Behav 22:749–770

    Article  Google Scholar 

  51. Valtonen M, Vainio AM, Vanhala J (2009) Proactive and adaptive fuzzy profile control for mobile phones. Proc. of the IEEE Int Conf on Pervasive Computing and Communications (PerCom), Galveston, Texas, USA:1–3

  52. van Woensel W, Gil M, Casteleyn S, Serral E, Pelechano V (2012) Adapting the obtrusiveness of service interactions in dynamically discovered environments. Proc. of MobiQuitous, Beijing, China:250–262

  53. W3C (2012), OWL 2Web Ontology Language Document Overview, Recommendation 11. Available at: http://www.w3.org/TR/owl2-overview. Accesed: November 2013

  54. Weld DS, Anderson C, Domingos P, Etzioni O, Gajos K, Lau T, Wolf S (2003) Automatically personalizing user interfaces. Proc. of the Int Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico:1613–1619

  55. Xu J, Hu Q, Lee W, Lee DL (2004) Performance evaluation of an optimal cache replacement policy for wireless data dissemination. IEEE Transactions on Knowledge and Data Engineering 16(1):125–139

    Article  Google Scholar 

  56. Yetgin Z, Çelik T (2012) Efficient progressive downloading over multimedia broadcast multicast service. Computer Networks 56(2):533–547

    Article  Google Scholar 

  57. Zheng Q, Zhu P, Wang Y, Xu M (2010) EPSP: Enhancing network protocol with social-aware plane. Proc. of IEEE/ACM Int Conference on Green Computing and Communications (GreenCom) and Int Conference on Cyber, Ohysical and Social Computing (CPSCom), Hangzhou, China:578–583

Download references

Acknowledgments

This work is supported in part by the Ministerio de Economía y Competitividad of the Government of Spain under project COMINN (IPT-2012-0883-430000) and by the project PAID/2012/313 from the PAID-05-12 program of the Vicerrectorado de Investigación of the Universitat Politècnica de València.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael de Fez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Fez, I., Gil, M., Fons, J. et al. A personalized system for scalable distribution of multimedia content in multicast wireless networks. Multimed Tools Appl 74, 9595–9621 (2015). https://doi.org/10.1007/s11042-014-2139-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2139-3

Keywords

Navigation