, Volume 72, Issue 3, pp 2871-2893
Date: 11 Jul 2013

Quality assessment of perceptual color video based on a top-down framework and quaternion

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Objective video quality assessment is of great importance in a variety of video processing applications. Most existing video quality metrics either focus primarily on capturing spatial artifacts in the video signal, or are designed to assess only grayscale video thereby ignoring important chrominance information. In this paper, on the basis of the top-down visual analysis of cognitive understanding and video features, we propose and develop a novel full-reference perceptual video assessment technique that accepts visual information inputs in the form of a quaternion consisting of contour, color and temporal information. Because of the more important role of chrominance information in the “border-to-surface” mechanism at early stages of cognitive visual processing, our new metric takes into account the chrominance information rather than the luminance information utilized in conventional video quality assessment. Our perceptual quaternion model employs singular value decomposition (SVD) and utilizes the human visual psychological features for SVD block weighting to better reflect perceptual focus and interest. Our major contributions include: a new perceptual quaternion that takes chrominance as one spatial feature, and temporal information to model motion or changes across adjacent frames; a three-level video quality measure to reflect visual psychology; and the two weighting methods based on entropy and frame correlation. Our experimental validation on the video quality experts’ group (VQEG) Phase I FR-TV test dataset demonstrated that our new assessment metric outperforms PSNR, SSIM, PVQM (P8) and has high correlation with perceived video quality.