Skip to main content
Log in

Boosted kernel for image categorization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recent machine learning techniques have demonstrated their capability for identifying image categories using image features. Among these techniques, Support Vector Machines (SVM) present good results for example in Pascal Voc challenge 2011 [8], particularly when they are associated with a kernel function [28, 35]. However, nowadays image categorization task is very challenging owing to the sizes of benchmark datasets and the number of categories to be classified. In such a context, lot of effort has to be put in the design of the kernel functions and underlying semantic features. In the following of the paper we call semantic features the features describing the (semantic) content of an image. In this paper, we propose a framework to learn an effective kernel function using the Boosting paradigm to linearly combine weak kernels. We then use a SVM with this kernel to categorize image databases. More specifically, this method create embedding functions to map images in a Hilbert space where they are better classified. Furthermore, our algorithm benefits from boosting process to learn this kernel with a complexity linear with the size of the training set. Experiments are carried out on popular benchmarks and databases to show the properties and behavior of the proposed method. On the PASCAL VOC2006 database, we compare our method to simple early fusion, and on the Oxford Flowers databases we show that our method outperforms the best Multiple Kernel Learning (MKL) techniques of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. \(\langle \mathbf{v}\mathbf{v}^\top, \mathbf{M}\mathbf{M}^\top \rangle = \text{trace}(\mathbf{v}\mathbf{v}^\top\mathbf{M}\mathbf{M}^\top) = \text{trace}(\mathbf{M}^\top\mathbf{v}\left(\mathbf{M}^\top\mathbf{v}\right)^\top) = \|\mathbf{M}^\top\mathbf{v}\|^2\).

  2. http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html

  3. http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html

References

  1. Awais M, Yan F, Mikolajczyk K, Kittler J (2011) Augmented kernel matrix vs classifier fusion for object recognition. In: British machine vision conference. BMVA Press, pp 60.1–60.11

  2. Bach, FR, Lanckriet GRG (2004) Multiple kernel learning, conic duality, and the smo algorithm. In: International conference on machine learning

  3. Cortes C (2009) Invited talk: can learning kernels help performance? In: International conference on machine learning, p 161

  4. Cortes C, Mohri M, Rostamizadeh A (2010) Two-stage learning kernel algorithms. In: International conference on machine learning

  5. Crammer K, Keshet J, Singer Y (2001) Kernel design using boosting. In: Advances in neural information processing systems. MIT Press, pp 537–544

  6. Cristianini N, Shawe-Taylor J, Elisseff A, Kandola J (2001) On kernel target alignement. In: Advances in neural information processing systems. Vancouver, Canada, pp 367–373

  7. Davis JV, Kulis B, Jain P, Sra S, Dhillon IS (2007) Information-theoretic metric learning. In: International conference on machine learning, vol 227. Corvalis, Oregon

  8. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2011) The Pascal visual object classes challenge 2011 (VOC2011) results. http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html

  9. Figueiras-Vidal AR, Rokach L (2012) An exploration of research directions in machine ensemble theory and applications. In: European symposium on artificial neural networks, computational intelligence and machine learning

  10. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Annals Stat 2:337–374

    Article  MathSciNet  Google Scholar 

  11. Gehler P, NowoziS S (2009) On feature combination for multiclass object classification. In: IEEE international conference on computer vision, pp 221–228

  12. Gong Y, Lazebnik S, Gordo A, Perronnin F (2012) Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans pattern Anal Mach Intell 99:1 (PrePrints)

    Google Scholar 

  13. Gosselin PH, Cord M (2006) Feature based approach to semi-supervised similarity learning. Pattern Recognit 39:1839–1851. Special issue on similarity-based pattern recognition

    Article  MATH  Google Scholar 

  14. Gosselin PH, Cord M, Philipp-Foliguet S (2008) Combining visual dictionary, kernel-based similarity and learning strategy for image category retrieval. Comput Vis Image Underst 110(3):403–417. Special issue on similarity matching in computer vision and multimedia

    Article  Google Scholar 

  15. Gosselin PH, Precioso F, Philipp-Foliguet S (2010) Incremental kernel learning for active image retrieval without global dictionaries. Pattern Recognit 44(10–11):2244–2254

    Google Scholar 

  16. Hazen TJ (2010) Multi-class svm optimization using mce training with application to topic identification. In: IEEE International conference on acoustics, speech, and signal processing, pp 5350–5353

  17. Kawanabe M, Nakajima S, Binder A (2009) A procedure of adaptive kernel combination with kernel-target alignment for object classification. In: ACM international conference on image and video retrieval

  18. Kloft M, Brefeld U, Sonnenburg S, Zien A (2011) Lp-norm multiple kernel learning. J Mach Learn Res 12:953–997

    MATH  MathSciNet  Google Scholar 

  19. Lanckriet GRG, Cristianini N, Bartlett N, El Ghaoui L, Jordan MI (2004) Learning the kernel matrix with semi-definite programming. Int J Mach Learn Res 5:27–72

    MATH  Google Scholar 

  20. Madzarov G, Gjorgjevikj D, Chorbev I (2008) A multi-class svm classifier utilizing binary decision tree. Informatica 33(1):233–242

    MathSciNet  Google Scholar 

  21. Nilsback ME, Zisserman A (2008) Automated flower classification over a large number of classes. In: Proceedings of the Indian conference on computer vision, graphics and image processing

  22. Orabona F, Jie L (2011) Ultra-fast optimization algorithm for sparse multi kernel learning. In: Getoor L, Scheffer T (eds) Proceedings of the 28th international conference on machine learning (ICML-11), ICML ’11. New York, NY, USA, ACM, pp. 249–256

  23. Picard D, Thome N, Cord M, Rakotomamonjy A (2012) Learning geometric combinations of gaussian kernels with alternating quasi-newton algorithm. In: European symposium on artificial neural networks, computational intelligence and machine learning

  24. Rakotomamonjy A, Bach F, Canu S, Grandvalet Y (2008) Simplemkl. J Mach Learn Res 9:2491–2521

    MATH  MathSciNet  Google Scholar 

  25. Sánchez J, Perronnin F (2011) High-dimensional signature compression for large-scale image classification. In: CVPR, pp 1665–1672

  26. Schölkopf B, Smola A (2002) Learning with Kernels. MIT Press, Cambridge, MA

    Google Scholar 

  27. Shawe-Taylor J, Cristianini N (2004) Kernel methods for Pattern Analysis. Cambridge University Press, ISBN 0-521-81397-2

  28. Song Z, Chen Q, Huang ZY, Hua Y, Yan S (2011) Contextualizing object detection and classification. In: CVPR, pp 1585–1592

  29. Sonnenburg S, Rtsh G, Schfer C, Schlkopf B (2006) Large scale multiple kernel learning. In J Mach Learn Res 7:1531–1565

    MATH  Google Scholar 

  30. Tieu K, Viola P (2000) Boosting image retrieval. In: IEEE international conference on computer vision and pattern recognition, pp 228–235

  31. Vapnik V (1982) Estimation of dependences based on empirical data. Springer-Verlag

  32. Varma M, Babu BR (2009) More generality in efficient multiple kernel learning. In: International conference on machine learning

  33. Vert R (2002) Designing a m-svm kernel for protein secondary structure prediction. Master’s thesis, DEA informatique de Lorraine

  34. Yu S, Tranchevent LC, De Moor B, Moreau Y (2011) Kernel-based data fusion for machine learning - Methods and applications in bioinformatics and text mining, vol 345. Studies in computational intelligence. Springer

  35. Yu Y, Zhang J, Huang Y, Zheng S, Ren W, Wang C, Huang K, Tan T (2010) Object detection by context and boosted hog-lbp. In: ECCV workshop on PASCAL VOC

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Lechervy.

Additional information

Thanks to DGA agency for funding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lechervy, A., Gosselin, PH. & Precioso, F. Boosted kernel for image categorization. Multimed Tools Appl 69, 471–490 (2014). https://doi.org/10.1007/s11042-012-1328-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1328-1

Keywords

Navigation