Skip to main content
Log in

Intelligent download and cache management for interactive non-linear video

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Since the invention of digital video significant progress has been made in reducing the amount of data needed to be transferred in the World Wide Web while improving viewing experience. However the paradigm of linear behavior has not changed at all. While the feature set of traditional digital video may be sufficient for some applications, there are several use cases where a significantly improved way of interacting with the content is highly desirable. It is possible to organize a video in an interactive and non-linear way. Additional information (for example high resolution images) can be added to any scene of the video. The non-linearity of the video flow and the implementation of additional content not found in traditional videos may lead to an increased download volume and/or a playback with many breaks for downloading missing elements. This paper describes a player framework for interactive non-linear videos. We developed the framework and its associated algorithms to simulate the playback of non-linear video content. It minimizes interruption when the sequence of scenes is directly influenced by interaction, while the traditional viewing experience is not altered. The evaluation showed that it is possible to reach shorter startup times using our strategies than using the strategies of other players. Furthermore, we demonstrated that a prefetching of elements does not lead to an increased download volume in every case. In contrast, it can even decrease the download volume if the right delete strategy is selected. It can be noted that the knowledge of the structure of interactive non-linear videos can be used to minimize startup times at the beginning of scenes while the download volume is not increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The software is available for download from http://www.siva.uni-passau.de (accessed 11 February 2012).

  2. http://www.facebook.com/SIVA.Suite?v=info#info_edit_sections (accessed 11 February 2012).

  3. www.youtube.com (accessed 11 February 2012).

  4. http://www.youtube.com/t/annotations_about (accessed 27 April 2012).

  5. The phrase “reload” defines the behavior of a video player when it pauses and buffers/downloads more data needed for play-back.

  6. the PLAY_MIN_REL-point.

  7. http://www.real.com/realplayer (accessed 11 February 2012).

References

  1. 5min LTD (2010) 5min Life Videopedia Beta. Website: http://www.5min.com/. Accessed 27 April 2012

  2. Abhari A, Dandamudi SP, Majumdar S (2006) Web object-based storage management in proxy caches. Future Gener Comput Syst 22:16–31. doi:10.1016/j.future.2005.08.003

    Article  Google Scholar 

  3. Abrams M, Standridge CR, Abdulla G, Williams S, Fox EA (1995) Caching proxies: limitations and potentials. In: Proceedings of the fourth international WWW conference, vol 239 (July), pp 119–133. http://eprints.cs.vt.edu:8000/archive/00000427/

  4. Abrams M, Standridge CR, Abdulla G, Fox EA, Williams S (1996) Removal policies in network caches for world-wide Web documents. SIGCOMM Comput Commun Rev 26:293–305. doi:10.1145/248157.248182

    Article  Google Scholar 

  5. Adzic V, Kalva H, Furht B (2011) A survey of multimedia content adaptation for mobile devices. Multimed Tools Appl 51:379–396. doi:10.1007/s11042-010-0669-x

    Article  Google Scholar 

  6. Aggarwal C, Wolf J, Yu P (1999) Caching on the world wide Web. IEEE Trans Knowl Data Eng 11(1):94–107

    Article  Google Scholar 

  7. Arlitt M, Cherkasova L, Dilley J, Friedrich R, Jin T (2000) Evaluating content management techniques for Web proxy caches. SIGMETRICS Perform Eval Rev 27:3–11. doi:10.1145/346000.346003

    Article  Google Scholar 

  8. Aubert O, Prié Y (2005) Advene: active reading through hypervideo. In: Proceedings of the sixteenth ACM conference on hypertext and hypermedia, HYPERTEXT ’05. ACM, New York, NY, USA, pp 235–244. doi:10.1145/1083356.1083405

    Chapter  Google Scholar 

  9. Aubert O, Champin PA, Prié Y, Richard B (2008) Canonical processes in active reading and hypervideo production. Multimedia Syst 14:427–433. doi:10.1007/s00530-008-0132-2

    Article  Google Scholar 

  10. Avramova Z, De Vleeschauwer D, Wittevrongel S, Bruneel H (2011) Performance analysis of a caching algorithm for a catch-up television service. Multimedia Syst 17:5–18. doi:10.1007/s00530-010-0201-1

    Article  Google Scholar 

  11. Bahn H, Koh K, Noh S, Lyul S (2002) Efficient replacement of nonuniform objects in Web caches. Comput 35(6):65–73. doi:10.1109/MC.2002.1009170

    Google Scholar 

  12. Bhikharie W (2010) XIMPEL overview. Website: http://www.cs.vu.nl/~eliens/im/report-im08-ximpel.pdf. Accessed 27 April 2012

  13. Bian N, Chen H (2008) A least grade page replacement algorithm for Web cache optimization. In: Proceedings of the first international workshop on knowledge discovery and data mining. IEEE Computer Society, Washington, DC, USA, pp 469–472. http://dl.acm.org/citation.cfm?id=1397762.1398322

    Chapter  Google Scholar 

  14. Bolot JC, Hoschka P (1996) Performance engineering of the world wide Web: application to dimensioning and cache design. Comput Netw ISDN Syst 28:1397–1405. 10.1016/0169-7552(96)00073-6

    Article  Google Scholar 

  15. Bota F, Corno F, Farinetti L (2002) Hypervideo: a parameterized hotspot approach. In: Proceedings of the IADIS international conference www/internet 2002, ICWI 2002. IADIS, pp 620–623

  16. Branch P, Egan G, Tonkin B (1999) A client caching scheme for interactive video-on-demand. In: IEEE international conference on networks (ICON ’99) Proceedings, pp 391–397. doi:10.1109/ICON.1999.796202

  17. Bulterman DC, Rutledge LW (2008) SMIL 3.0: flexible multimedia for Web, mobile devices and daisy talking books, 2nd edn. Springer Publishing Company, Incorporated

  18. Bulterman DC, Jansen J, Kleanthous K, Blom K, Benden D (2004) Ambulant: a fast, multi-platform open source smil player. In: Proceedings of the 12th annual ACM international conference on multimedia, MULTIMEDIA ’04. ACM, New York, NY, USA, pp 492–495

    Chapter  Google Scholar 

  19. Cao P, Irani S (1997) Cost-aware www proxy caching algorithms. In: Proceedings of the USENIX symposium on internet technologies and systems on USENIX symposium on internet technologies and systems. USENIX Association, Berkeley, CA, USA, pp 18–18. http://dl.acm.org/citation.cfm?id=1267279.1267297

    Google Scholar 

  20. Carlsson N, Mahanti A, Li Z, Eager D (2008) Optimized periodic broadcast of nonlinear media. IEEE Trans Multimedia 10(5):871–884. doi:10.1109/TMM.2008.922847

    Article  Google Scholar 

  21. Cheng K, Kambayashi Y (2000) Lru-sp: a size-adjusted and popularity-aware lru replacement algorithm for Web caching. In: Computer software and applications conference, 2000. COMPSAC 2000. The 24th annual international, pp 148–53. doi:10.1109/CMPSAC.2000.884690

  22. Chilamkurti N, Zeadally S, Soni R, Giambene G (2010) Wireless multimedia delivery over 802.11e with cross-layer optimization techniques. Multimed Tools Appl 47:189–205. doi:10.1007/s11042-009-0413-6

    Article  Google Scholar 

  23. Cho K, Ryu Y, Won Y, Koh K (2003) Virtual interval caching scheme for interactive multimedia streaming workload. In: Yazici A, Sener C (eds) Computer and information sciences—ISCIS 2003. Lecture notes in computer science, vol 2869. Springer, Berlin/Heidelberg, pp 276–283

    Chapter  Google Scholar 

  24. Cohen E, Krishnamurthy B, Rexford J (1998) Evaluating server-assisted cache replacement in the Web. In: Proceedings of the 6th annual European Symposium on Algorithms, ESA ’98. Springer-Verlag, London, UK, pp 307–319. http://dl.acm.org/citation.cfm?id=647908.740142

    Google Scholar 

  25. De Vleeschauwer D, Laevens K (2009) Performance of caching algorithms for iptv on-demand services. IEEE Trans Broadcast 55(2):491–501. doi:10.1109/TBC.2009.2015983

    Article  Google Scholar 

  26. Doherty J, Girgensohn A, Helfman J, Shipman F, Wilcox L (2003) Detail-on-demand hypervideo. In: Proceedings of the eleventh ACM international conference on Multimedia, MULTIMEDIA ’03. ACM, New York, NY, USA, pp 600–601. doi:10.1145/957013.957140

    Chapter  Google Scholar 

  27. Fei Z, Ammar MH, Kamel I, Mukherjee S (2005) An active buffer management technique for providing interactive functions in broadcast video-on-demand systems. IEEE Trans Multimedia 7(5):942–950. doi:10.1109/TMM.2005.854403

    Article  Google Scholar 

  28. Foong AP, Hu YH, Heisey DM (2000) Essence of an effective Web caching algorithm. In: Graham P, Maheswaran M (eds) International conference on internet computing. CSREA Press, pp 269–276

  29. Friedrich M, Hollfelder S, Aberer K (2000) Stochastic resource prediction and admission for interactive sessions on multimedia servers. In: Proceedings of the eighth ACM international conference on Multimedia, MULTIMEDIA ’00. ACM, New York, NY, USA, pp. 117–126. doi:10.1145/354384.354446

    Chapter  Google Scholar 

  30. Gao B, Jansen J, Cesar P, Bulterman DC (2011) Accurate and low-delay seeking within and across mash-ups of highly-compressed videos. In: Proceedings of the 21st international workshop on network and operating systems support for digital audio and video, NOSSDAV ’11. ACM, New York, NY, USA, pp 105–110. doi:10.1145/1989240.1989266

    Google Scholar 

  31. Geetha K, Gounden N, Monikandan S (2009) Semalru: an implementation of modified Web cache replacement algorithm. In: World congress on nature biologically inspired computing, 2009. NaBIC 2009, pp 1406–1410. doi:10.1109/NABIC.2009.5393711

  32. Gotz D (2006) Scalable and adaptive streaming for non-linear media. In: Proceedings of the 14th annual ACM international conference on Multimedia, MULTIMEDIA ’06. ACM, New York, NY, USA, pp 357–366. doi:10.1145/1180639.1180717

    Chapter  Google Scholar 

  33. Grigoras R, Charvillat V, Douze M (2002) Optimizing hypervideo navigation using a markov decision process approach. In: Proceedings of the tenth ACM international conference on multimedia, MULTIMEDIA ’02. ACM, New York, NY, USA, pp 39–48. doi:10.1145/641007.641014

    Chapter  Google Scholar 

  34. Halawa S, Pang D, Cheung NM, Girod B (2011) Classx: an open source interactive lecture streamingsystem. In: Proceedings of the 19th ACM international conference on Multimedia, MM ’11. ACM, New York, NY, USA, pp 719–722. doi:10.1145/2072298.2072428

    Chapter  Google Scholar 

  35. Hammoud R (2006) Introduction to interactive video. In: Hammoud RI (ed) Interactive video, signals and communication technology. Springer, Berlin Heidelberg, pp 3–25

    Chapter  Google Scholar 

  36. Hoffmann P, Kochems T, Herczeg M (2008) Hylive: hypervideo-authoring for live television. In: Tscheligi M, Obrist M, Lugmayr A (eds) Changing television environments. Lecture notes in computer science, vol 5066. Springer, Berlin/Heidelberg, pp 51–60. doi:10.1007/978-3-540-69478-6_6

    Chapter  Google Scholar 

  37. Hollfelder S, Aberer K (1998) An admission control framework for applications with variable consumption rates in client-pull architectures. In: Jajodia S, Özsu MT, Dogac A (eds) Multimedia information systems. Lecture notes in computer science, vol 1508. Springer, pp 82–97. http://dblp.uni-trier.de/db/conf/mis/mis98.html#HollfelderA98

  38. Hollfelder S, Aberer K (1999) Resource prediction for admission control of interactive multimedia sessions. In: Golubchik L, Tsotras VJ (eds) Multimedia information systems, pp 115–122. http://dblp.uni-trier.de/db/conf/mis/mis1999.html#HollfelderA99

  39. Hosack B, Miller C, Ernst D (2009) VideoANT: extending video beyond content delivery through annotation. In: Proceedings of world conference on e-learning in corporate, government, healthcare, and higher education. AACE, Vancouver, Canada, pp 1654–1658. http://www.editlib.org/p/32696

    Google Scholar 

  40. InnoTeamS GmbH (2010) ADIVI—add digital information to video. Website: http://www.adivi.net/. Accessed 27 April 2012

  41. Inoue M, Kimata H, Fukazawa K, Matsuura N (2010) Interactive panoramic video streaming system over restricted bandwidth network. In: Proceedings of the international conference on Multimedia, MM ’10. ACM, New York, NY, USA, pp 1191–1194. doi:10.1145/1873951.1874184

    Chapter  Google Scholar 

  42. Jin S, Bestavros A (2001) Greedydual* Web caching algorithm: exploiting the two sources of temporal locality in Web request streams. Comput Commun 24(2):174–183. http://www.sciencedirect.com/science/article/pii/S0140366400003121

    Article  Google Scholar 

  43. Khiem NQM, Ravindra G, Ooi WT (2011) Towards understanding user tolerance to network latency in zoomable video streaming. In: Proceedings of the 19th ACM international conference on Multimedia, MM ’11. ACM, New York, NY, USA, pp 977–980. doi:10.1145/2072298.2071917

    Chapter  Google Scholar 

  44. Kosch H, Mostefaoui A, Böszörményi L, Brunie L (2004) Heuristics for optimizing multi-clip queries in video databases. Multimed Tools Appl 22:235–262. doi:10.1023/B:MTAP.0000017030.45487.43

    Article  Google Scholar 

  45. Krishnappa DK, Khemmarat S, Gao L, Zink M (2011) On the feasibility of prefetching and caching for online tv services: a measurement study on hulu. In: Proceedings of the 12th international conference on Passive and active measurement, PAM’11. Springer, Berlin, Heidelberg, pp 72–80. http://dl.acm.org/citation.cfm?id=1987510.1987518

    Chapter  Google Scholar 

  46. Laraspata R, Striccoli D, Camarda P (2010) A scheduling algorithm for interactive video streaming in umts networks. In: 2010 IEEE symposium on computers and communications (ISCC), pp 997–1002. doi:10.1109/ISCC.2010.5546653

  47. Lee S, Chung K (2008) Buffer-driven adaptive video streaming with tcp-friendliness. Comput Commun 31:2621–2630. http://portal.acm.org/citation.cfm?id=1379906.1380019

    Article  Google Scholar 

  48. Lee I, Park J (2010) A scalable and adaptive video streaming framework over multiple paths. Multimed Tools Appl 47:207–224. doi:10.1007/s11042-009-0414-5

    Article  Google Scholar 

  49. Li Y, Ong K (2009) Optimized scalable cache management for video streaming system. Multimed Tools Appl 44:65–86. doi:10.1007/s11042-009-0264-1

    Article  Google Scholar 

  50. Li Z, Simon G (2011) Time-shifted tv in content centric networks: the case for cooperative in-network caching. In: 2011 IEEE International conference on communications (ICC), pp 1–6. doi:10.1109/icc.2011.5963380

  51. Liao WK, Shih PH (2002) Architecture of proxy partial caching using http for supporting interactive video and cache consistency. In: Eleventh international conference on computer communications and networks, 2002. Proceedings, pp 216–221. doi:10.1109/ICCCN.2002.1043069

  52. Liebl G, Jenkac H, Stockhammer T, Buchner C (2005) Joint buffer management and scheduling for wireless video streaming. In: Lorenz P, Dini P (eds) In: Networking—ICN 2005, proceedings of the 4th international conference on networking, ICN (1). Lecture notes in computer science, vol 3420. Springer, pp 882–891

  53. Liu J, Li B (2004) A qos-based joint scheduling and caching algorithm for multimedia objects. World Wide Web 7:281–296. doi:10.1023/B:WWWJ.0000028181.13079.80

    Article  Google Scholar 

  54. Makar M, Mavlankar A, Agrawal P, Girod B (2010) Real-time video streaming with interactive region-of-interest. In: 17th IEEE international conference on image processing (ICIP), pp 4437–4440. doi:10.1109/ICIP.2010.5653982

  55. Mayer-Patel K, Gotz D (2007) Scalable, adaptive streaming for nonlinear media. IEEE MultiMedia 14:68–83. http://portal.acm.org/citation.cfm?id=1435658.1436730

    Article  Google Scholar 

  56. Mehmood R, Alturki R (2011) A scalable multimedia qos architecture for ad hoc networks. Multimed Tools Appl 54:551–568. doi:10.1007/s11042-010-0569-0

    Article  Google Scholar 

  57. Meixner B, Siegel B, Hölbling G, Lehner F, Kosch H (2010) Siva suite: authoring system and player for interactive non-linear videos. In: Proceedings of the international conference on multimedia, MM ’10. ACM, New York, NY, USA, pp 1563–1566. doi:10.1145/1873951.1874287

    Chapter  Google Scholar 

  58. Miller G, Fels S, Ilich M, Finke M, Bauer T, Wong K, Mueller S (2011) An end-to-end framework for multi-view video content: creating multiple-perspective hypervideo to view on mobile platforms. In: Anacleto J, Fels S, Graham N, Kapralos B, Saif El-Nasr M, Stanley K (eds) Entertainment computing—ICEC 2011. Lecture notes in computer science, vol 6972. Springer, Berlin/Heidelberg, pp 337–342

    Chapter  Google Scholar 

  59. Murta CD, Almeida VAF Jr, Wagner M Jr (1998) Analyzing performance of partitioned caches for the www. In: Proceedings of the 3rd international www caching workshop, Manchester, England. TERENA, Trans-European research and education networking association

  60. Niclausse N, Liu Z, Nain P, Centre I, Antipolis S (1998) A new efficient caching policy for the world wide Web. In: Proceedings of the workshop on internet server performance. Madison, WI, USA

  61. Palau C, Mares J, Molina B, Esteve M (2011) Wireless cdn video streaming architecture for iptv. Multimed Tools Appl 53:591–613. doi:10.1007/s11042-010-0516-0

    Article  Google Scholar 

  62. ParandehGheibi A, Medard M, Ozdaglar A, Shakkottai S (2011) Avoiding interruptions—a qoe reliability function for streaming media applications. IEEE J Sel Areas Commun 29(5):1064–1074. doi:10.1109/JSAC.2011.110516

    Article  Google Scholar 

  63. Park Y, Lee Y, Kim H, Kim K (2007) Segment based caching replacement algorithm in streaming media transcoding proxy. In: Ata S, Hong C (eds) Managing next generation networks and services. Lecture notes in computer science, vol 4773. Springer, Berlin/Heidelberg, pp 612–615

    Chapter  Google Scholar 

  64. Podlipnig S, Böszörmenyi L (2003) A survey of Web cache replacement strategies. ACM Comput Surv 35:374–398. doi:10.1145/954339.954341

    Article  Google Scholar 

  65. Quick TV Limited (2010) Make your video dynamic & interactive. Website: http://www.quick.tv/. Accessed 27 April 2012

  66. Rizzo L, Vicisano L (2000) Replacement policies for a proxy cache. IEEE/ACM Trans Netw 8(2):158–170. doi:10.1109/90.842139

    Article  Google Scholar 

  67. Scheuermann P, Shim J, Vingralek R (1997) A case for delay-conscious caching of Web documents. Comput Netw ISDN Syst 29:997–1005. doi:10.1016/S0169-7552(97)00032-9

    Article  Google Scholar 

  68. Seitner F, Bleyer M, Gelautz M, Beuschel R (2011) Evaluation of data-parallel h.264 decoding approaches for strongly resource-restricted architectures. Multimed Tools Appl 53:431–457. doi:10.1007/s11042-010-0501-7

    Article  Google Scholar 

  69. Sharman R, Ramanna SS, Ramesh R, Gopal R (2007) Cache architecture for on-demand streaming on the Web. TWEB 1(3):13:1–13:35. doi:10.1145/1281480.1281483

    Google Scholar 

  70. Shipman F, Girgensohn A, Wilcox L (2003) Generation of interactive multi-level video summaries. In: Proceedings of the eleventh ACM international conference on Multimedia, MULTIMEDIA ’03, pp 392–401. ACM, New York, NY, USA. doi:10.1145/957013.957096

    Chapter  Google Scholar 

  71. Shipman F, Girgensohn A, Wilcox L (2008) Authoring, viewing, and generating hypervideo: an overview of hyper-hitchcock. ACM Trans Multimedia Comput Commun Appl 5:15:1–15:19. doi:10.1145/1413862.1413868

    Article  Google Scholar 

  72. Shreedhar M, Varghese G (1996) Efficient fair queueing using deficit round robin. IEEE/ACM Trans Netw 4(3):375–385. doi:10.1109/90.502236

    Article  Google Scholar 

  73. Sun HM, Weng MW (2010) Rate-smoothed schedule with tolerable data dropping for video coding stream. Multimed Tools Appl 57(3):1–18. doi:10.1007/s11042-010-0659-z

    Google Scholar 

  74. Tatarinov I (1998) An efficient lfu-like policy for Web caches. Tech rep, Computer Science Department, North Dakota State University, Wahpeton, ND

  75. Tsai MF, Shieh CK, Ke CH, Deng DJ (2010) Sub-packet forward error correction mechanism for video streaming over wireless networks. Multimed Tools Appl 47:49–69. doi:10.1007/s11042-009-0406-5

    Article  Google Scholar 

  76. Velammal B, Anandha Kumar P (2009) An efficient adaptation aware caching architecture for multimedia content proxies. Int J Comput Netw Secur (IJCNS) 1(2):89–94. http://www.scribd.com/doc/44636615/091114

    Google Scholar 

  77. VIDDIX BV (2010) Viddix Beta (Mix Video with the Web). Website: http://www.viddix.com/. Accessed 27 April 2012

  78. VideoClix.tv (2010) VideoClix.tv. Website: http://videoclix.tv/. Accessed 27 April 2012

  79. Wauters T, Van de Meerssche W, De Turck F, Dhoedt B, Demeester P (2006) Co-operative proxy caching algorithms for time-shifted iptv services. In: 32nd EUROMICRO conference on software engineering and advanced applications, 2006. SEAA ’06, pp 379–386. doi:10.1109/EUROMICRO.2006.29

  80. Wessels D (1995) Intelligent caching for world-wide Web objects. Master’s thesis, University of Colorado at Boulder, Boulder, CO

  81. Wong KY (2006) Web cache replacement policies: a pragmatic approach. IEEE Net 20(1):28–34

    Article  Google Scholar 

  82. Wooster RP, Abrams M (1997) Proxy caching that estimates page load delays. Comput Netw ISDN Syst 29:977–986. doi:10.1016/S0169-7552(97)00041-X

    Article  Google Scholar 

  83. Yang Q, Zhang H, Zhang H (2001) Taylor series prediction: a cache replacement policy based on second-order trend analysis. In: System sciences. Proceedings of the 34th annual Hawaii international conference on, p 7. doi:10.1109/HICSS.2001.926537

  84. YouTube LLC (2011) Creating or editing annotations. Website: http://www.google.com/support/youtube/bin/answer.py?answer=92710&topic=14354. Accessed 27 April 2012

  85. Zhao Y, Eager DL, Vernon MK (2007) Scalable on-demand streaming of nonlinear media. IEEE/ACM Trans Netw 15:1149–1162. doi:10.1109/TNET.2007.896534

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Meixner.

Appendix

Appendix

Table 3 Settings for different prefetching depths
Table 4 Settings for bandwidth and cache size for different player settings
Table 5 Settings for different delete strategies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meixner, B., Hoffmann, J. Intelligent download and cache management for interactive non-linear video. Multimed Tools Appl 70, 905–948 (2014). https://doi.org/10.1007/s11042-012-1158-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1158-1

Keywords

Navigation