Skip to main content
Log in

Deformation twinning of titanium β-alloys of transition class

  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The structure of deformed titanium β-alloys of transition class is studied. A model of anomalous twinning over the {332} 〈113〉 system typical for these alloys is developed. An explanation of the low stress of nucleation and growth of such twins, the ease of their intersection with each other, and the blocking action of the twin boundaries in slip deformation is given within the framework of the model. The effect of aging after cold plastic deformation on the yield strength of titanium β-alloys strained by twinning over the {332} 〈113〉 system is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Kolachev and S. G. Glazunov (eds.), Physical Metallurgy of Titanium and Its Alloys [in Russian], Metallurgiya, Moscow (1992).

    Google Scholar 

  2. V. S. Litvinov, A. A. Popov, O. A. Elkina, and A. V. Litvinov, “Deformation twins {332}〈113〉 in titanium β-alloys,” Fiz. Met. Metalloved., 83, Issue 5, 152–160 (1997).

    CAS  Google Scholar 

  3. Yu. R. Nemirovskii, A. V. Litvinov, and O. A. Elkina, “Substructure of deformation twins {332} 〈113〉 in titanium β-alloys,” Fiz. Met. Metalloved., 85, Issue 4, 162–164 (1998).

    CAS  Google Scholar 

  4. A. A. Popov, A. V. Litvinov, and A. G. Illarionov, “Special features of the structure of twins of transition-class alloy Ti-Al-Mo-V-Cr,” Fiz. Met. Metalloved., 88, Issue 5, 68–71 (1999).

    CAS  Google Scholar 

  5. A. G. Crocker, “Twinned martensite,” Acta Metall., 10(2), 113–122 (1962).

    Article  CAS  Google Scholar 

  6. J. Hirth and J. Lothe, The Dislocation Theory [Russian translation], Atomizdat, Moscow (1972).

    Google Scholar 

  7. R. H. Richman, Deformation Twinning, New York-London (1064).

  8. V. S. Litvinov and G. M. Rusakov, “Twinning on the {332}〈113〉 system in unstable β-titanium alloys,” Phys. Met. Metallogr., 90, Suppl. 1, 96–107 (2000).

    Google Scholar 

  9. Y. Takemoto, M. Hida, and A. Sakakibara, “Structural relaxation of interface of {332} 〈113〉 twin in β-Ti alloy,” J. Jpn. Inst. Met., 57(12), 1471–1472 (1993).

    CAS  Google Scholar 

  10. Yu. R. Nemirovskii, “On the possibility of martensitic origin of {332}-twins in (β+ω)-alloys of titanium,” Fiz. Met. Metalloved., 86, Issue 1, 33–42 (1998).

    CAS  Google Scholar 

  11. M. A. Shtremel’, The Strength of Alloys, Part II [in Russian], MISiS, Moscow (1997).

    Google Scholar 

  12. A. W. Sleeswyk, “Emissary dislocations: twin interaction and twin growth,” Acta Metall., 12(7), 669–672 (1964).

    CAS  Google Scholar 

  13. A. W. Sleeswyk, “Emissary dislocations theory and experiments on the propagation of deformation twins in α-iron,” Acta Metall., 10(8), 705–725 (1962).

    Article  CAS  Google Scholar 

  14. G. M. Rusakov and A. V. Litvinov, “Intersection of deformation twins {332}〈 113〉 in titanium β-alloys,” Fiz. Met. Metalloved., 93(5), 17–24 (2002).

    CAS  Google Scholar 

  15. A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals [in Russian], Metallurgiya, Moscow (1980).

    Google Scholar 

  16. V. S. Litvinov and G. M. Rusakov, “Interaction between dislocations and \(\{ 112\} \left\langle {11\bar 1} \right\rangle \) twin boundaries in crystals with bcc lattice,” Fiz. Met. Metalloved., 88, Issue 4, 76–81 (1999).

    CAS  Google Scholar 

  17. G. M. Rusakov and V. S. Litvinov, “Intersection of {111}〈112〉 twin boundaries by lattice dislocations in fcc crystals without formation of dislocations of orientation mismatch,” Fiz. Met. Metalloved., 89, Issue 5, 19–23 (2000).

    Google Scholar 

  18. A. A. Popov, A. V. Litvinov, and A. G. Illarionov, “Special features of interaction between lattice dislocations and {332}〈113〉 deformation twin boundaries in crystals with bcc lattice, ” Fiz. Met. Metalloved., 89, Issue 1, 5–8 (2000).

    CAS  Google Scholar 

  19. L. E. Popova and A. A. Popov, Diagrams of Austenite Transformations in Steels and Beta-Solutions in Titanium Alloys, A Handbook for Heat Treatment Specialists [in Russian], Metallurgiya, Moscow (1991).

    Google Scholar 

  20. A. A. Popov, “Processes of decomposition of metastable β-phase in titanium alloys with different initial structure,” in: Heat Treatment and Metal Physics, Issue 12 [in Russian], UPI, Sverdlovsk (1987), pp. 3–8.

    Google Scholar 

  21. O. A. Elkina and R. M. Lerinman, “Structural changes in metastable Ti-Mo alloy in the process of deformation and aging,” Fiz. Met. Metalloved., 45, Issue 1, 96–102 (1978).

    CAS  Google Scholar 

  22. O. A. Elkina, S. V. Sudareva, L. S. Meshchaninova, et al., “Special features and mechanical properties of metastable β-titanium alloys after deformation and aging,” Fiz. Met. Metalloved., 58, Issue 2, 377–382 (1984).

    CAS  Google Scholar 

  23. A. A. Popov, “Special features of decomposition of metastable β-phase in transition-class titanium alloys upon plastic deformation,” Izv. Vuzov, Tsvetn. Met., No. 1, 36–42 (1998).

  24. A. G. Illarionov, A. A. Popov, A. V. Korelin, and E. V. Golubeva, “Effect of hot deformation on structure formation and properties of semiproducts from titanium alloy Ti − 10% V − 2% Fe −3% Al, ” Metalloved. Term. Obrab. Met., No. 11, 13–21 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 14–21, June, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusakov, G.M., Litvinov, A.V. & Litvinov, V.S. Deformation twinning of titanium β-alloys of transition class. Met Sci Heat Treat 48, 244–251 (2006). https://doi.org/10.1007/s11041-006-0078-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-006-0078-y

Keywords

Navigation