Skip to main content

Advertisement

Log in

Characterization of a naturally occurring truncated Dicer

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dicer is central to small RNA silencing pathways, thus playing an important role in physiological and pathological states. Recently, a number of mutations in dicer gene have been identified in diverse types of cancer, implicating Dicer in oncogenic cooperation. Here we report on the properties of a rare splice variant of the human dicer gene, occurring in neuroblastoma cells, and not detectable in normal tissues. Due to the skipping of one exon, the alternatively spliced transcript encodes a putative truncated protein, t-Dicer, lacking the dsRNA-binding domain and bearing altered one of the two RNase III catalytic centers. The ability of the exon-depleted t-dicer transcript to be translated in vitro was first investigated by the expression of flagged t-Dicer in human cells. We found that t-dicer transcript could be translated in vitro, albeit not as efficiently as full-length dicer transcript. Then, the possible enzymatic activity of t-Dicer was analyzed by an in vitro dicing assay able to distinguish the enzymatic activity of the individual RNase III domains. We showed that t-Dicer preserved partial dicing activity. Overall, the results indicate that t-dicer transcript could produce a protein still able to bind the substrate and to cleave only one of the two pre-miRNA strands. Given the increasing number of mutations reported for dicer gene in tumours, our experimental approach could be useful to characterize the activity of these mutants, which may dictate changes in selected classes of small RNAs and/or lead to their aberrant maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579:5822–5829

    Article  CAS  PubMed  Google Scholar 

  2. Jaskiewicz L, Filipowicz W (2008) Role of Dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol 320:77–97

    CAS  PubMed  Google Scholar 

  3. Tian Y, Simanshu DK, Ma JB, Park JE, Heo I, Kim VN, Patel DJ (2014) A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol Cell 53(4):606–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wostenberg C, Lary JW, Sahu D, Acevedo R, Quarles KA, Cole JL, Showalter SA (2012) The role of human Dicer-dsRBD in processing small regulatory RNAs. PLoS ONE 7(12):e51829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human dicer and bacterial Rnase III. Cell 118:57–68

    Article  CAS  PubMed  Google Scholar 

  6. Ma E, MacRae IJ, Kirsch JF, Doudna JA (2008) Autoinhibition of human dicer by its internal helicase domain. J Mol Biol 380:237–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 7051:740–744

    Article  Google Scholar 

  8. Lee Y, Hur Y, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway. EMBO J 25:522–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lee HY, Zhou K, Smith AM, Noland CL, Doudna JA (2013) Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res 41(13):6568–6576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lau PW, Guiley KZ, De N, Potter CS, Carragher B, MacRae IJ (2012) The molecular architecture of human Dicer. Nat Struct Mol Biol 19(4):436–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    Article  CAS  PubMed  Google Scholar 

  12. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  CAS  PubMed  Google Scholar 

  13. Slade I, Bacchelli C, Davies H, Murray A, Abbaszadeh F, Hanks S, Barfoot R, Burke A, Chisholm J, Hewitt M, Jenkinson H, King D, Morland B, Pizer B, Prescott K, Saggar A, Side L, Traunecker H, Vaidya S, Ward P, Futreal PA, Vujanic G, Nicholson AG, Sebire N, Turnbull C, Priest JR, Pritchard-Jones K, Houlston R, Stiller C, Stratton MR, Douglas J, Rahman N (2011) DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J Med Genet 48(4):273–278

    Article  CAS  PubMed  Google Scholar 

  14. Foulkes WD, Priest JR, Duchaine TF (2014) DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 14(10):662–672

    Article  CAS  PubMed  Google Scholar 

  15. Potenza N, Papa U, Russo A (2009) Differential expression of Dicer and Argonaute genes during the differentiation of human neuroblastoma cells. Cell Biol Int 33:734–738

    Article  CAS  PubMed  Google Scholar 

  16. Potenza N, Papa U, Scaruffi P, Mosca N, Tonini GP, Russo A (2010) A novel splice variant of the human dicer gene is expressed in neuroblastoma cells. FEBS Lett 584(15):3452–3457

    Article  CAS  PubMed  Google Scholar 

  17. Koscianska E, Starega-Roslan J, Czubala K, Krzyzosiak WJ (2011) High-resolution northern blot for a reliable analysis of microRNAs and their precursors. Sci World J 11:102–117

    Article  Google Scholar 

  18. Starega-Roslan J, Krol J, Koscianska E, Kozlowski P, Szlachcic WJ, Sobczak K, Krzyzosiak WJ (2011) Structural basis of microRNA length variety. Nucleic Acids Res 1:257–268

    Article  Google Scholar 

  19. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  PubMed  Google Scholar 

  20. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hernan R, Heuermann K, Brizzard B (2000) Multiple epitope tagging of expressed proteins for enhanced detection. Biotechniques 28(4):789–793

    CAS  PubMed  Google Scholar 

  22. Wu MK, Sabbaghian N, Xu B, Addidou-Kalucki S, Bernard C, Zou D, Reeve AE, Eccles MR, Cole C, Choong CS, Charles A, Tan TY, Iglesias DM, Goodyer PR, Foulkes WD (2013) Biallelic DICER1 mutations occur in Wilms tumours. J Pathol 230(2):154–164

    Article  CAS  PubMed  Google Scholar 

  23. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci USA 105(2):512–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Flores-Jasso CF, Arenas-Huertero C, Reyes JL, Contreras-Cubas C, Covarrubias A, Vaca L (2009) First step in pre-miRNAs processing by human Dicer. Acta Pharmacol Sin 30(8):1177–1185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Leuschner PJ, Martinez J (2007) In vitro analysis of microRNA processing using recombinant Dicer and cytoplasmic extracts of HeLa cells. Methods 43(2):105–109

    Article  CAS  PubMed  Google Scholar 

  26. Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475(7355):201–205

    Article  CAS  PubMed  Google Scholar 

  27. Kolb FA, Zhang H, Jaronczyk K, Tahbaz N, Hobman TC, Filipowicz W (2005) Human dicer: purification, properties, and interaction with PAZ PIWI domain proteins. Methods Enzymol 392:316–336

    Article  CAS  PubMed  Google Scholar 

  28. Koscianska E, Starega-Roslan J, Krzyzosiak WJ (2011) The role of Dicer protein partners in the processing of microRNA precursors. PLoS ONE 6(12):e28548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, Zamore PD (2012) Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151(3):533–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Potenza N, Papa U, Mosca N, Zerbini F, Nobile V, Russo A (2011) Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Res 39(12):5157–5163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mosca N, Castiello F, Coppola N, Trotta MC, Sagnelli C, Pisaturo M, Sagnelli E, Russo A, Potenza N (2014) Functional interplay between hepatitis B virus X protein and human miR-125a in HBV infection. Biochem Biophys Res Commun 449(1):141–145

    Article  CAS  PubMed  Google Scholar 

  32. D’Angelo V, Pecoraro G, Indolfi P, Iannotta A, Donofrio V, Errico ME, Indolfi C, Ramaglia M, Lombardi A, Di Martino M, Gigantino V, Baldi A, Caraglia M, De Luca A, Casale F (2014) Expression and localization of serine protease Htra1 in neuroblastoma: correlation with cellular differentiation grade. J Neurooncol 117(2):287–294

    Article  PubMed  Google Scholar 

  33. lannaccone M, Giuberti G, De Vivo G, Caraglia M, Gentile V (2013) Identification of a FXIIIA variant in human neuroblastoma cell lines. Int J Biochem Mol Biol 4(2):102–107

    PubMed Central  PubMed  Google Scholar 

  34. Nakaguro M, Kiyonari S, Kishida S, Cao D, Murakami-Tonami Y, Ichikawa H, Takeuchi I, Nakamura S, Kadomatsu K (2015) The nucleolar protein PES1 is a marker of neuroblastoma outcome and is associated with neuroblastoma differentiation. Cancer Sci 106:237–243

    Article  CAS  PubMed  Google Scholar 

  35. Anglesio MS, Wang Y, Yang W, Senz J, Wan A, Heravi-Moussavi A, Salamanca C, Maines-Bandiera S, Huntsman DG, Morin GB (2013) Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse-strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage. J Pathol 229(3):400–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Regione Campania (L5/2007 and 2008) and National Science Centre [2011/03/B/NZ1/03259 to W.J.K]. Financial support for young investigators from the Polish Ministry of Science and Higher Education (statutory funds) is gratefully acknowledged (J.S-R).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wlodzimierz J. Krzyzosiak or Nicoletta Potenza.

Additional information

Nicola Mosca and Julia Starega-Roslan authors are joint First Authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosca, N., Starega-Roslan, J., Castiello, F. et al. Characterization of a naturally occurring truncated Dicer. Mol Biol Rep 42, 1333–1340 (2015). https://doi.org/10.1007/s11033-015-3878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3878-6

Keywords

Navigation