Skip to main content

Advertisement

Log in

MicroRNA-30c serves as an independent biochemical recurrence predictor and potential tumor suppressor for prostate cancer

Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNA-30c (miR-30c) acts as a tumor suppressor or a tumor promoter in various human malignancies. However, the involvement of miR-30c in prostate cancer (PCa) is still unclear. The aim of this study was to investigate the molecular function and the clinical significance of miR-30c in PCa. Expression levels of miR-30c in PCa tissues and cells were detected by quantitative real-time-PCR (qRT-PCR). Additionally, the associations of miR-30c expression with clinicopathological features and prognosis in PCa patients were analyzed. The potential role of miR-30c in tumorigenesis of PCa cells was further evaluated by in vitro cell assays. MiR-30c was significantly down-regulated in PCa tissues and cells compared with the corresponding controls (P < 0.05). In addition, the downregulation of miR-30c in PCa tissues was significantly associated with higher Gleason score (P = 0.009), advanced pathological stage (P = 0.016) and biochemical recurrence (P = 0.034). Moreover, Kaplan–Meier survival analysis showed that the reduced expression of miR-30c was correlated with shorter biochemical recurrence-free survival (P = 0.023). The multivariate analysis also identified miR-30c as an independent prognostic predictor for biochemical recurrence-free survival in patients with PCa. Furthermore, the enforced expression of miR-30c suppressed proliferation, migration and invasion of PCa cells in vitro. Our data indicated the involvement of miR-30c in PCa progression and suggested its potential role as an independent predictor of biochemical recurrence in PCa. On cellular level, miR-30c may function as a tumor suppressor for PCa cells by inhibiting tumor cell proliferation, migration and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 46:765–781

    Article  CAS  PubMed  Google Scholar 

  3. Utomo NB, Mochtar CA, Umbas R (2012) Primary hormonal treatment in localized and locally advanced prostate cancer: effectiveness and survival predictive factors. Acta Med Indones 44:10–15

    PubMed  Google Scholar 

  4. Dasgupta S, Srinidhi S, Vishwanatha JK (2012) Oncogenic activation in prostate cancer progression and metastasis: molecular insights and future challenges. J Carcinog 11:4

    Article  PubMed Central  PubMed  Google Scholar 

  5. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101:811–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kurdistani SK (2007) Histone modifications as markers of cancer prognosis: a cellular view. Br J Cancer 97:1–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM, Yan W (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287:25173–25190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Plaisier CL, Pan M, Baliga NS (2012) A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res 22:2302–2314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196

    Article  CAS  PubMed  Google Scholar 

  10. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down regulation of micro-RNA genes miR15 e miR16 and 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, Odenthal M (2008) MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 47:1223–1232

    Article  CAS  PubMed  Google Scholar 

  12. Ozen M, Creighton CJ, Ozdemir M, Ittmann M (2008) Wide-spread deregulation of microRNA expression in human prostate cancer. Oncogene 27:1788–1793

    Article  CAS  PubMed  Google Scholar 

  13. He HC, Zhu JG, Chen XB, Chen SM, Han ZD, Dai QS, Ling XH, Fu X, Lin ZY, Deng YH, Qin GQ, Cai C, Chen JH, Zhong WD (2012) MicroRNA-23b downregulates peroxiredoxin III in human prostate cancer. FEBS Lett 586:2451–2458

    Article  CAS  PubMed  Google Scholar 

  14. Xiong SW, Lin TX, Xu KW, Dong W, Ling XH, Jiang FN, Chen G, Zhong WD, Huang J (2013) MicroRNA-335 Acts as a candidate tumor suppressor in prostate cancer. Pathol Oncol Res 19:529–537

    Google Scholar 

  15. Lee H, Park CS, Deftereos G, Morihara J, Stern JE, Hawes SE, Swisher E, Kiviat NB, Feng Q (2012) MicroRNA expression in ovarian carcinoma and its correlation with clinicopathological features. World J Surg Oncol 10:174

    Article  PubMed Central  PubMed  Google Scholar 

  16. Busacca S, Germano S, De Cecco L, Rinaldi M, Comoglio F, Favero F, Murer B, Mutti L, Pierotti M, Gaudino G (2010) MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am J Respir Cell Mol Biol 42:312–319

    Article  CAS  PubMed  Google Scholar 

  17. Benner MF, Ballabio E, van Kester MS, Saunders NJ, Vermeer MH, Willemze R, Lawrie CH, Tensen CP (2012) Primary cutaneous anaplastic large cell lymphoma shows a distinct miRNA expression profile and reveals differences from tumor-stage mycosis fungoides. Exp Dermatol 21:632–634

    Article  CAS  PubMed  Google Scholar 

  18. Tanic M, Yanowsky K, Rodriguez-Antona C, Andrés R, Márquez-Rodas I, Osorio A, Benitez J, Martinez-Delgado B (2012) Deregulated miRNAs in hereditary breast cancer revealed a role for miR-30c in regulating KRAS oncogene. PLoS ONE 7:e38847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, Gajda MR, Junker K (2011) Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol 29:367–373

    Article  CAS  PubMed  Google Scholar 

  20. Wang G, Zhang H, He H, Tong W, Wang B, Liao G, Chen Z, Du C (2010) Up-regulation of microRNA in bladder tumor tissue is not common. Int Urol Nephrol 42:95–102

    Article  PubMed  Google Scholar 

  21. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135

    Article  CAS  PubMed  Google Scholar 

  22. Chen ZH, Zhang GL, Li HR, Luo JD, Li ZX, Chen GM, Yang J (2012) A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate 72:1443–1452

    Article  CAS  PubMed  Google Scholar 

  23. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  CAS  PubMed  Google Scholar 

  24. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D’Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271–1277

    Article  CAS  PubMed  Google Scholar 

  25. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  26. Fendler A, Jung M, Stephan C, Honey RJ, Stewart RJ, Pace KT, Erbersdobler A, Samaan S, Jung K, Yousef GM (2011) miRNAs can predict prostate cancer biochemical relapse and are involved in tumor progression. Int J Oncol 39:1183–1192

    CAS  PubMed  Google Scholar 

  27. Schaefer A, Stephan C, Busch J, Yousef GM, Jung K (2010) Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors. Nat Rev Urol 7:286–297

    Article  CAS  PubMed  Google Scholar 

  28. Yu F, Deng H, Yao H, Liu Q, Su F, Song E (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29:4194–4204

    Article  CAS  PubMed  Google Scholar 

  29. Zhou H, Xu X, Xun Q, Yu D, Ling J, Guo F, Yan Y, Shi J, Hu Y (2012) microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. Oncol Rep 27:807–812

    CAS  PubMed  Google Scholar 

  30. Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, Sun J, Lovat F, Alder H, Condorelli G, Engelman JA, Ono M, Rho JK, Cascione L, Volinia S, Nephew KP, Croce CM (2011) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18:74–82

    PubMed Central  PubMed  Google Scholar 

  31. Wu F, Zhu S, Ding Y, Beck WT, Mo YY (2009) MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res 15:1550–1557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Gong J, Liu R, Zhuang R, Zhang Y, Fang L, Xu Z, Jin L, Wang T, Song C, Yang K, Wei Y, Yang A, Jin B, Chen L (2012) miR-30c-1* promotes natural killer cell cytotoxicity against human hepatoma cells by targeting the transcription factor HMBOX1. Cancer Sci 103:645–652

    Article  CAS  PubMed  Google Scholar 

  33. Wang XS, Shankar S, Dhanasekaran SM, Ateeq B, Sasaki AT, Jing X, Robinson D, Cao Q, Prensner JR, Yocum AK, Wang R, Fries DF, Han B, Asangani IA, Cao X, Li Y, Omenn GS, Pflueger D, Gopalan A, Reuter VE, Kahoud ER, Cantley LC, Rubin MA, Palanisamy N, Varambally S, Chinnaiyan AM (2011) Characterization of KRAS rearrangements in metastatic prostate cancer. Cancer Discov 1:35–43

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kim JH, Lee JM, Nam HJ, Choi HJ, Yang JW, Lee JS, Kim MH, Kim SI, Chung CH, Kim KI, Baek SH (2007) SUMOylation of pontin chromatin-remodeling complex reveals a signal integration code in prostate cancer cells. Proc Natl Acad Sci USA 104:20793–20798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wang H, Fan L, Wei J, Weng Y, Zhou L, Shi Y, Zhou W, Ma D, Wang C (2012) Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. PLoS ONE 7:e46888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A, Devere White RW, Kung HJ (2013) miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene. doi:10.1038/onc.2013.200

  37. Brase JC, Johannes M, Schlomm T, Fälth M, Haese A, Steuber T, Beissbarth T, Kuner R, Sültmann H (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128:608–616

    Article  CAS  PubMed  Google Scholar 

  38. Rodríguez-González FG, Sieuwerts AM, Smid M, Look MP, Meijer-van Gelder ME, de Weerd V, Sleijfer S, Martens JW, Foekens JA (2011) MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res Treat 127:43–51

    Article  PubMed  Google Scholar 

  39. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC (1999) Natural history of progression after PSA elevation: following radical prostatectomy. JAMA 281:1591–1597

    Article  CAS  PubMed  Google Scholar 

  40. Li T, Li RS, Li YH, Zhong S, Chen YY, Zhang CM, Hu MM, Shen ZJ (2012) miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J Urol 187:1466–1472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Key Personnel Plan of Zhejiang Province Medical and Health Platform (Class A) (2011RCA019), National Natural Science Foundation of China (81170699, 81272813, 81200550), Science and Technology Project of Guangdong Province (2012B031800008), Medical Research Fund of Guangdong Province (A2012489), Guangzhou Municipal Science and Technology Key Project (11C23150711), Key Projects of Bureau of Health in Guangzhou Municipality (201102A212015).

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-de Zhong.

Additional information

Xiao-hui Ling, Zhao-dong Han and Dan Xia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, Xh., Han, Zd., Xia, D. et al. MicroRNA-30c serves as an independent biochemical recurrence predictor and potential tumor suppressor for prostate cancer. Mol Biol Rep 41, 2779–2788 (2014). https://doi.org/10.1007/s11033-014-3132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3132-7

Keywords

Navigation