Skip to main content
Log in

A sex-associated sequence identified by RAPD screening in gynogenetic individuals of turbot (Scophthalmus maximus)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Understanding the genetic basis of sex determination mechanisms is essential for improving the productivity of farmed aquaculture fish species like turbot (Scophthalmus maximus). In culture conditions turbot males grow slower than females starting from eight months post-hatch, and this differential growth rate is maintained until sexual maturation is reached, being mature females almost twice as big as males of the same age. The goal of this study was to identify sex-specific DNA markers in turbot using comparative random amplified polymorphism DNA (RAPD) profiles in males and females to get new insights of the genetic architecture related to sex determination. In order to do this, we analyzed 540 commercial 10-mer RAPD primers in male and female pools of a gynogenetic family because of its higher inbreeding, which facilitates the detection of associations across the genome. Two sex-linked RAPD markers were identified in the female pool and one in the male pool. After the analysis of the three markers on individual samples of each pool and also in unrelated individuals, only one RAPD showed significant association with females. This marker was isolated, cloned and sequenced, containing two sequences, a microsatellite (SEX01) and a minisatellite (SEX02), which were mapped in the turbot reference map. From this map position, through a comparative mapping approach, we identified Foxl2, a relevant gene related to initial steps of sex differentiation, and Wnt4, a gene related with ovarian development, close to the microsatellite and minisatellite markers, respectively. The position of Foxl2 and Wnt4 was confirmed by linkage mapping in the reference turbot map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ali BA, Huang TH, Qin DN, Wang XM (2004) A review of random amplified polymorphic DNA (RAPD) markers in fish research. Rev Fish Biol Fisher 14:443–453. doi:10.1007/s11160-005-0815-0

    Article  Google Scholar 

  2. Baron D, Cocquet J, Xia X, Fellous M, Guiguen Y, Veitia RA (2004) An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation. J Mol Endocrinol 33:705–715. doi:10.1677/jme.1.01566

    Article  CAS  PubMed  Google Scholar 

  3. Batargias C (1998) Genetics of seabream (Sparus aurata). Study of microsatellites and their use for the estimation of genetic parameters of growth and other quantitative characters. PhD Thesis, University of Crete

  4. Baynes SM, Verner-Jeffreys D, Howell BR (2006) Research on finfish cultivation. Science Series Technical Report, Lowestoft, UK, 132, 64 pp

  5. Blanquer A (1990) Phylogeographie intraspecific d’un poisson marin, le flet Platichthys flesus L. (Heterosomata). Polymorphisme des marqueurs nucleaires et mitochondriaux. Ph. D. thesis Univ, Montpellier

  6. Bouza C, Sánchez L, Martínez P (1994) Karyotypic characterization of turbot (Scophthalmus maximus) with conventional fluorochrome and restriction endonuclease-banding techniques. Mar Biol 120:609–613. doi:10.1007/BF00350082

    Article  Google Scholar 

  7. Bouza C, Hermida M, Pardo BG, Fernández C, Fortes GG, Castro J, Sánchez L, Presa P, Pérez M, Sanjuan A, de Carlos A, Álvarez-Dios JA, Ezcurra S, Cal RM, Piferrer F, Martínez P (2007) A microsatellite genetic map of the turbot (Scophthalmus maximus). Genetics 177:2457–2467. doi:10.1534/genetics.107.075416

    Article  CAS  PubMed  Google Scholar 

  8. Bouza C, Hermida M, Pardo BG, Vera M, Fernández C, Herrán R, Navajas-Pérez R, Álvarez-Dios JA, Gómez-Tato A, Martínez P (2012) An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts. BMC Genet 13:54. doi:10.1186/1471-2156-13-54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bronzi P, Rosenthal H, Gessner J (2011) Global sturgeon aquaculture production: an overview. J Appl Ichthyol 27:169–175. doi:10.1111/j.1439-0426.2011.01757.x

    Article  Google Scholar 

  10. Cal RM, Vidal S, Martínez P, Álvarez-Blázquez B, Gómez C (2006) Survival, growth, gonadal development, and sex ratios of gynogenetic diploid turbot. J Fish Biol 68:401–413. doi:10.1111/j.0022-1112.2006.00889.x

    Article  Google Scholar 

  11. Cal RM, Vidal S, Gómez C, Alvarez-Vázquez B, Martínez P, Piferrer F (2006) Growth and gonadal development in diploid and triploid turbot (Scophthalmus maximus). Aquaculture 251:99–108. doi:10.1016/j.aquaculture.2005.05.010

    Article  CAS  Google Scholar 

  12. Casas L, Sánchez L, Orbán L (2011) Sex-associated DNA markers from turbot. Mar Biol Res 7:378–387. doi:10.1080/17451000.2010.515226

    Article  Google Scholar 

  13. Castro J, Bouza C, Sánchez L, Cal RM, Piferrer F (2003) Gynogenesis assessment using microsatellite genetic markers in turbot (Scophthalmus maximus). Mar Biotechnol 5:584–592. doi:10.1007/s10126-003-0004-x

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Wang Y, Yue Y, Xia X, Du O, Chang Z (2009) A novel male-specific DNA sequence in the common carp, Cyprinus carpio. Mol Cell Probes 23:235–239. doi:10.1016/j.mcp.2009.04.004

    Article  PubMed  Google Scholar 

  15. Chourrout D (1982) Gynogenesis caused by ultraviolet radiation of salmonid sperm. J Exp Zool 223:175–181

    Article  CAS  PubMed  Google Scholar 

  16. Cnaani A, Levavi-Sivan B (2009) Sexual development in fish, practical applications for aquaculture. Sex Dev 3:164–175. doi:10.1159/000223080

    Article  CAS  PubMed  Google Scholar 

  17. Cocquet J, Pailhoux E, Jaubert F, Servel N, Xia X, Pannetier M, De Baere E, Messiaen I, Cotinot C, Fellous M, Veitia R (2002) Evolution and expression of FOXL2. J Med Genet 39:916–921. doi:10.1136/jmg.39.12.916

    Article  CAS  PubMed  Google Scholar 

  18. Cuñado N, Terrones J, Sánchez L, Martínez P, Santos JL (2001) Synaptonemal complex analysis in spermatocytes and oocytes of turbot, Scophthalmus maximus (Pisces: Scophthalmidae). Genome 44:1143–1147. doi:10.1139/gen-44-6-1143

    Article  PubMed  Google Scholar 

  19. Davey A, Jellyman D (2005) Sex determination in freshwater eels and management options for manipulation of sex. Rev Fish Biol Fisher 15:37–52. doi:10.1007/s11160-005-7431-x

    Article  Google Scholar 

  20. Dong X, Chen S, Ji X, Shao C (2011) Molecular cloning, characterization and expression analysis of Sox9a and Foxl2 genes in half-smooth tongue sole (Cynoglossus semilaevis). Acta Oceanol Sin 30:68–77. doi:10.1007/s13131-011-0092-9

    Article  CAS  Google Scholar 

  21. Dunham RA, Majumdar K, Hallerman E, Bartley D, Mair G, Hulata G, Liu Z, Pongthana N, Bakos J, Penman D, Gupta M, Rothlisberg P, Hoerstgen-Schwark G (2001) Review of the status of aquaculture genetics. In: Subasinghe RP, Bueno P, Phillips MJ, Hough C McGladdery SE and Arthur JR (eds.) Technical proceedings of the conference on aquaculture in the third milleniun, Bangkok, Thailand, 20-25 February 2000. NACA, Bangkok, and FAO, Rome, pp 129-157

  22. FAO. © 2005-2011. Fisheries Topics: Resources. State of world aquaculture. Text by Rohana Subasinghe. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 27 May 2005. [Cited 26 July 2010]. http://www.fao.org/fishery/topic/13540/en

  23. FAO. © (2012) Status and trends. Aquaculture. In: State of world fisheries and aquaculture FAO Fisheries and Aquaculture Department. http://www.fao.org/docrep/016/i2727e/i2727e.pdf

  24. Fujimura K, Conte MA, Kocher TD (2011) Circular DNA intermediate in the duplication of Nile Tilapia vasa Genes. PLoS One 6(12):e29477. doi:10.1371/journal.pone.0029477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gomelski B, Cherfas N, Peretz Y, Bendom N, Hulata G (1994) Hormonal sex inversion in the common carp (Cyprinus carpio L.). Aquaculture 126:265–270

    Article  Google Scholar 

  26. Goudie CA, Simco BA, Davis KB, Carmichael GJ (1994) Growth of channel catfish in mixed sex and monosex pond culture. Aquaculture 128:97–104. doi:10.1016/0044-8486(94)90105-8

    Article  Google Scholar 

  27. Haffray P, Lebège E, Jeu S, Guennoc M, Guiguen Y, Baroiller JF, Fostier A (2009) Genetic determination and temperature effects on turbot Scophthalmus maximus sex differentiation: an investigation using steroid sex-inverted males and females. Aquaculture 294:30–36. doi:10.1016/j.aquaculture.2009.05.004

    Article  Google Scholar 

  28. Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strussmann CA (2012) A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Dev Biol 109:2955–2959. doi:10.1073/pnas.1018392109

    CAS  Google Scholar 

  29. Hickling CF (1963) The cultivation of tilapia. Sci Am 208:143–153

    Article  Google Scholar 

  30. Imsland A, Folkvord A, Stefansson O, Taranger L (1997) Sexual dimorphism in growth and maturation of turbot, Scophthalmus maximus (Rafinesque, 1810). Aquac Res 28:101–114. doi:10.1046/j.1365-2109.1997.t01-1-00829.x

    Article  Google Scholar 

  31. Iturra P, Medrano JF, Bagley M, Vergara N, Marin JC (1998) Identification of sex chromosome molecular markers using RAPDs and fluorescent in situ hybridization in rainbow trout. Genetica 101:209–213. doi:10.1023/A:1018371623919

    Article  Google Scholar 

  32. Jalabert B (2005) Particularities of reproduction and oogenesis in teleost fish compared to mammals. Reprod Nutr Dev 45:261–279. doi:10.1051/rnd:2005019

    Article  PubMed  Google Scholar 

  33. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K (2012) A trans-species missense SNP in Amhr2 is associated with sex determination in the Tiger pufferfish, Takigugu rubripes (Fugu). PLoS Genet 8(7):e1002798. doi:10.1371/journal.pgen.1002798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Keyvanshokooh S, Pourkazemi M, Kalbasi MR (2007) The RAPD technique failed to identify sex- specific sequences in beluga (Huso huso). J Appl Ichthyol 23:1–2. doi:10.1111/j.1439-0426.2006.00798.x

    Article  CAS  Google Scholar 

  35. Kikuchi K, Kai W, Hosokawa A, Mizuno N, Suetake H, Asahina K, Suzuki Y (2007) The sex-determining locus in the tiger pufferfish, Takifugu rubripes. Genetics 175:2039–2042. doi:10.1534/genetics.106.069278

    Article  CAS  PubMed  Google Scholar 

  36. Kovacs B, Egedi S, Bártfai R, Orbán L (2000) Male-specific DNA markers from African catfish (Clarias gariepinus). Genetica 110:267–276. doi:10.1023/A:1012739318941

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Hill JA, Yue GH (2002) Extensive search does not identify genomic sex markers in Tetraodon nigroviridis. J Fish Biol 61:1314–1317. doi:10.1111/j.1095-8649.2002.tb02475.x

    Article  CAS  Google Scholar 

  38. Loukovitis D, Sarropoulou E, Tsigenopoulos CS, Batargias C, Magoulas A, Apostolidis AP, Chatziplis C, Kotoulas G (2011) Quantitative trait loci involved in sex determination and body growth in the gilthead Sea Bream (Sparus aurata L.) through targeted genome scan. PLoS One 6(1):e16599. doi:10.1371/journal.pone.0016599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Martínez P, Bouza C, Hermida M, Fernández J, Toro MA, Vera M, Pardo B, Millán A, Fernández C, Vilas R, Viñas A, Sánchez L, Felip A, Piferrer F, Ferreiro I, Cabaleiro S (2009) Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics 183:1443–1452. doi:10.1534/genetics.109.107979

    Article  PubMed  Google Scholar 

  40. McCormick CR, Bos DH, DeWoody JA (2008) Multiple molecular approaches yield no evidence for sex determining genes in Lake Sturgeon (Acipenser fulvescens). J Appl Ichthyol 24:643–645. doi:10.1111/j.1439-0426.2008.01156.x

    CAS  Google Scholar 

  41. McGowan C, Davidson WS (1998) The RAPD technique fails to detect a male-specific genetic marker in Atlantic salmon. J Fish Biol 53:1134–1136. doi:10.1111/j.1095-8649.1998.tb00469.x

    Article  CAS  Google Scholar 

  42. Moghadam HK, Poissant J, Fotherty H, Haidle L, Ferguson MM, Danzmann RG (2007) Quantitative trait loci for body weight, condition factor and age at sexual maturation in Arctic charr (Salvelinus alpinus): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Mol Genet Genomics 277:647–661. doi:10.1007/s00438-007-0215-3

    Article  CAS  PubMed  Google Scholar 

  43. Mousabi-Sabet H, Langroudi HF, Rohanirad M (2012) Sex reversal, mortality and growth of guppy (Poecilia reticulate) affected by 17-alpha methyltestosterone. Poeciliid Res 2(1):1–8

    Google Scholar 

  44. Myosho T, Naruse K, Otake H, Fujiyama A, Hamaguchi S, Kuroki Y, Masuyama H, Matsuda M, Sakaizumi M (2012) Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191:163–170. doi:10.1534/genetics.111.137497

    Article  CAS  PubMed  Google Scholar 

  45. Nakamoto M, Matsuda M, Wang D-S, Nagahama Y, Shibata N (2006) Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochem Biophys Res Commun 344:353–361. doi:10.1016/j.bbrc.2006.03.137

    Article  CAS  PubMed  Google Scholar 

  46. Nicol B, Guigen Y (2011) Expression profiling of Wnt Signaling genes during gonadal differentiation and gametogenesis in rainbow trout. Sex Dev 5:318–329. doi:10.1159/000334515

    Article  CAS  PubMed  Google Scholar 

  47. Pannetier M, Fabre S, Batista F, Kocer A, Renault L, Jolivet G, Mandon-Pépin B, Cotinot C, Veitia R, Pailhoux E (2006) FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J Mol Endocrinol 3(6):41–399. doi:10.1677/jme.1.01947

    Google Scholar 

  48. Penman DJ, Piferrer F (2008) Fish gonadogenesis. Part 1: genetic and environmental mechanisms of sex determination. Rev Fish Sci 16:16–34. doi:10.1080/10641260802324610

    Article  CAS  Google Scholar 

  49. Piferrer F (2001) Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197:229–281. doi:10.1016/S0044-8486(01)00589-0

    Article  CAS  Google Scholar 

  50. Piferrer F, Felip A, Blazquez M (1995) Control genético y fisiológico de las proporciones de sexos de los teleósteos y su aplicación en acuicultura. In: Aulas del Mar, Acuicultura, Biología Marina. Zamora S., Agulleiro y Garcia O. (eds.), Murcia. pp 75-109

  51. Piferrer F, Cal RM, Gómez C, Alvarez-Blázquez B, Castro J, Martínez P (2004) Induction of gynogenesis in turbot (Scophthalmus maximus). Effects of UV-irradiation on sperm motility, the Hertwig effect, and viability during the first six month of age. Aquaculture 238:403–419. doi:10.1016/j.aquaculture.2004.05.009

    Article  Google Scholar 

  52. Purdom CE (1969) Radiation-induced gynogenesis and androgenesis in fish. Heredity 24:431–444

    Article  CAS  PubMed  Google Scholar 

  53. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact test and ecumenicism. J Hered 86:248–249

    Google Scholar 

  54. Rodríguez-Ramilo ST, De La Herrán R, Ruiz-Rejón C, Fernández C, Pereiro P, Figueras A, Bouza C, Toro MA, Martínez P, Fernández J (2013) Identification of quatitative trait loci associated with resistance to viral haemorrhagic septicemia (VHS) in turbot (Scophthalmus maximus): a comparison between bacterium, parasite and virus diseases. Mar Biotechnol. doi:10.1007/s10126-013-9544-x

  55. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  56. Sánchez FJ, Peleteiro JB, Forés R, Olmedo M, Iglesias J (1990) Crecimiento del rodaballo (Schophthalmus maximus) en condiciones experimentales de cultivo. Bol del Insituto Esp de Oceanogr 6:127–132

    Google Scholar 

  57. Sánchez-Molano E, Cerna A, Toro MA, Bouza C, Hermida M, Pardo BG, Cabaleiro S, Fernández J, Martínez P (2011) Detection of growth-related QTL in turbot (Scophthalmus maximus). BMC Genom 12:473. doi:10.1186/1471-2164-12-473

    Article  Google Scholar 

  58. Siegfried KR, Nusslein-Volhard C (2008) Germ line control of female sex determination in zebrafish. Dev Biol 324:277–287. doi:10.1016/j.ydbio.2008.09.025

    Article  CAS  PubMed  Google Scholar 

  59. Taboada X, Robledo D, Del Palacio L, Rodeiro A, Felip A, Martínez P, Viñas A (2012) Comparative expression analysis in mature gonads, liver and brain of turbot (Scophthalmus maximus) by cDNA-AFLPs. Gene 492:250–261. doi:10.1016/j.gene.2011.10.020

    Article  CAS  PubMed  Google Scholar 

  60. Thorgaard GH (1983) Chromosome set manipulation and sex control in fish. In: Hoar WH, Randall DJ, Donaldson EM (eds) Fish Physiology, vol IXB. Academic Press, New York, pp 405–434

    Google Scholar 

  61. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress K, Treier AC, Klugmann C, Klasen C, Holter NH, Riethmacher D, Schütz G, Cooney AJ, Lovell-Badge R, Treier M (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139(6):1130–1142. doi:10.1016/j.cell.2009.11.021

    Article  CAS  PubMed  Google Scholar 

  62. Vera M, Alvarez-Dios JA, Millán A, Pardo BG, Bouza C, Hermida M, Fernández C, de la Herrán R, Molina-Luzón MJ, Martínez P (2011) Validation of single nucleotide polymorphism (SNP) markers from an immune Expressed Sequence Tag (EST) turbot, Scophthalmus maximus, database. Aquaculture 313:31–41. doi:10.1016/j.aquaculture.2011.01.038

    Article  CAS  Google Scholar 

  63. Viñas A, Taboada X, Vale L, Robledo D, Hermida M, Vera M, Mertínez P (2012) Mapping of DNA sex-specific markers and genes related to sex differentiation in turbot (Scophthalmus maximus). Mar Biotechnol 14(5):655–663. doi:10.1007/s10126-012-9451-6

    Article  PubMed  Google Scholar 

  64. Wang D, Kobayashi T, Zhou L, Nagahama Y (2004) Molecular cloning and gene expression of Foxl2 in the Nile tilapia, Oreochromis niloticus. Biochem Biophys Res Commun 320:83–89. doi:10.1016/j.bbrc.2004.05.133

    Article  CAS  PubMed  Google Scholar 

  65. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Williams JGK, Kubelik AR, Livak KJ, Raflaski JA, Tingey V (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18:6531–6535

    Article  CAS  PubMed  Google Scholar 

  67. Wotton KR, French KE, Shimeld SM (2007) The developmental expression of foxl2 in the dogfish Scyliorhinus canicula. Gene Expr Patterns 7:793–797. doi:10.1016/j.modgep.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  68. Wu GC, Chang CF (2009) Wnt4 is associated with the development of ovarian tissue in the protandrous Black Porgy, Acanthopagrus schlegeli. Biol Reprod 6:1073–1082. doi:10.1095/biolreprod.109.077362

    Article  Google Scholar 

  69. Wuertz S, Gaillard S, Barbisan F, Carle S, Congiu L, Forlani A, Aubert J, Kirschbaum F, Tosi E, Zane L, Grillasca JP (2006) Extensive screening of sturgeon genomes by random screening techniques revealed no sex-specific marker. Aquaculture 258:685–688. doi:10.1016/j.aquaculture.2006.03.042

    Article  CAS  Google Scholar 

  70. Yamaguchi T, Yamaguchi S, Hirai T, Kitano T (2007) Follicle-stimulating hormone signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun 359:935–940. doi:10.1016/j.bbrc.2007.05.208

    Article  CAS  PubMed  Google Scholar 

  71. Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y (2012) An inmune-related gene evolved into the master sex-determining gene in rainbow trout Oncorhynchus mykiss. Curr Biol 22(15):1423–1428. doi:10.1016/j.cub.2012.05.045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Ministerio de Ciencia y Tecnología (AGL2003-05539) and by the Xunta the Galicia Government (07MMA004200PR) projects. We thank Cristina Gianzo for technical support, Miguel Hermida for markers mapping and Carmen Bouza for population analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Viñas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vale, L., Dieguez, R., Sánchez, L. et al. A sex-associated sequence identified by RAPD screening in gynogenetic individuals of turbot (Scophthalmus maximus). Mol Biol Rep 41, 1501–1509 (2014). https://doi.org/10.1007/s11033-013-2995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2995-3

Keywords

Navigation