Skip to main content
Log in

Study of individual and sex genetic diversity among each genus and between two genera of Chrysopa and Chrysoperla (Neuroptera, Chrysopidae) based on RAPD-PCR polymorphism

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

RAPD (random amplification of polymorphic DNA) was used to distinguish the genetic diversities between two genera of Chrysopa and Chrysoperla (Neuroptera, Chrysopidae). Sixty specimens were collected in different places in Kermanshah, west of Iran. The wing venation was used for identification of each type of two genera, and the gender was determined by study of external genitalia. 20 random primers were used for polymerase chain reaction. Then, the electrophoresis was used for separation of the PCR products on agarose gel. 294 bands were amplified, which 235 bands were polymorph and others (59s) determined as monomorph. The electrophoresis results showed that the primers OPA02 with 19 bands and OPA03 with 8 bands successively amplified the maximum and minimum of bands among the applied primers. The results showed that there are maximum of genetic diversity and minimum of genetic similarity between Chrysopa male (Chrysopa-M) and Chrysoperla female)Chrysoperla-F) population, in contrast, there are maximum of genetic similarity and minimum of genetic diversity between Chrysoperla-M and Chrysoperla-F, and Chrysopa-M and Chrysopa-F. There are also more genetic similarities, between males and females of Chrysopa and Chrysoperla, than between male of Chrysopa with female of Chrysoperla or vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Winterton S, De Freitas S (2006) Molecular phylogeny of the green lacewings (Neuroptera: chrysopidae). Aust J Entomol 45(3):235–243. doi:10.1111/j.1440-6055.2006.00537.x

    Article  Google Scholar 

  2. Brooks SJ, Barnard PC (1990) The green lacewings of the world: a generic review (Neuroptera: Chrysopidae). Bull Br Museum (Natural History)

  3. Henry CS, Wells MLM (2009) Sexually dimorphic intrasexual duetting in an otherwise monomorphic green lacewing (Neuroptera, Chrysopidae, Chrysoperla plorabunda): sexual selection or sex recognition? J Insect Behav 22(4):289–312. doi:10.1007/s10905-009-9174-3

    Article  Google Scholar 

  4. Brooks SJ (1997) An overview of the current status of chrysopidae (Neuroptera) systematics. Deutsche Entomologische Zeitschrift 44(2):267–275. doi:10.1002/mmnd.19970440212

    Article  Google Scholar 

  5. Lourenço P, Brito C, Backeljau T, Thierry D, Ventura MA (2006) Molecular systematics of the Chrysoperla carnea group (Neuroptera: Chrysopidae) in Europe. J Zool Sci 44(2):180–184

    Google Scholar 

  6. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagaraju J, Reddy KD, Nagaraja GM, Sethuraman BN (2001) Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity (Edinb) 86(Pt 5):588–597

    Article  CAS  Google Scholar 

  8. Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York, USA

    Google Scholar 

  9. Ghasempour HR, Kahrizi D, Mahdiah N (2007) New discussions in biotechnology. Razi University Press, Razi

    Google Scholar 

  10. Fleurat-Lessard1 F, Pronier V (2006) Genetic differentiation at the inter- and intra-specific level of stored grain insects using a simple molecular approach (RAPD). In: Proceedings of 9th international working conference on stored product protection. Sao-Polo, Brasil

  11. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kahrizi D, Arminian A, Masumi AA (2007) In vitro plant breeding. Razi University Press, Razi

    Google Scholar 

  13. Lou KF, Weiss MJ, Bruckner PL, Morill WL, Talbert LE, Martin JM (1998) RAPD variation within and among geographic populations of wheat stem sawfly (Cephuscinctus Norton). J Hered 89(4):329–335

    Article  CAS  Google Scholar 

  14. Zhou X, Faktor O, Applebaum SW, Coll M (2000) Population structure of the pestiferous moth Helicoverpa armigera in the Eastern Mediterranean using RAPD analysis. Heredity 85(3):251–256

    Article  PubMed  Google Scholar 

  15. Gadelhak GG, Enan MR (2005) Genetic diversity among populations of red palm weevil, Rhynchophorus ferrugineus olivier (Coleoptera: curculionidae), determined by random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Int J Agric Biol 7(3):395–399

    CAS  Google Scholar 

  16. Helmi A, Khafaga AF (2011) Molecular fingerprinting of certain cereal aphids in Egypt (Hemiptera: Sternorhyncha, Aphididae) using RAPD and ISSR markers and A. F. Khafaga. J Entomol 8(4):327–340

    Article  Google Scholar 

  17. Aspöck H, Aspöck U, Hölzel H (1980) Die Neuropteren Europas. Spektrum Akademischer Verlag, German

    Google Scholar 

  18. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  19. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Caterino MS, Cho S, Sperling FA (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annu Rev Entomol 45:1–54. doi:10.1146/annurev.ento.45.1.1

    Article  CAS  PubMed  Google Scholar 

  21. Swofford DL (1993) PAUP. Phylogenetic analysis using parsimony (and other methods). Massachusetts, Sunderland

    Google Scholar 

  22. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 70(12):3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danial Kahrizi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirmoayedi, A., Kahrizi, D., Ebadi, A.A. et al. Study of individual and sex genetic diversity among each genus and between two genera of Chrysopa and Chrysoperla (Neuroptera, Chrysopidae) based on RAPD-PCR polymorphism. Mol Biol Rep 39, 8999–9006 (2012). https://doi.org/10.1007/s11033-012-1770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1770-1

Keywords

Navigation