Skip to main content
Log in

Diagnosis of mitochondrial disorders applying massive pyrosequencing

Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mitochondrial disorders are a frequent cause of neurological disability affecting children and adults. Traditionally, molecular diagnosis of mitochondrial diseases was mostly accomplished by the use of Sanger sequencing and PCR–RFLP. However, there are particular drawbacks associated with the use of these methods. Recent multidisciplinary advances have led to new sequencing methods that may overcome these limitations. Our goal was to explore the use of a next generation sequencing platform in the molecular diagnosis of mitochondrial diseases reporting our findings in adult patients that present with a clinical-pathological diagnosis of a mitochondrial encephalomyopathy. Complete genomic sequences of mitochondrial DNA were obtained by 454 massive pyrosequencing from blood samples. The analysis of these sequences allowed us to identify two diagnostic pathogenic mutations and 74 homoplasmic polymorphisms, useful for obtaining high-resolution mitochondrial haplogroups. In summary, molecular diagnosis of mitochondrial disorders could be efficiently done from readily accessible samples, such as blood, with the use of a new sequencing platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Wong LJ, Scaglia F, Graham BH, Craigen WJ (2010) Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab 100(2):111–117. doi:10.1016/j.ymgme.2010.02.024

    Article  PubMed  CAS  Google Scholar 

  2. He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464(7288):610–614. doi:10.1038/nature08802

    Article  PubMed  CAS  Google Scholar 

  3. Poulton J, Chiaratti MR, Meirelles FV, Kennedy S, Wells D, Holt IJ (2010) Transmission of mitochondrial DNA diseases and ways to prevent them. PLoS Genet 6(8):e1001066. doi:10.1371/journal.pgen.1001066

  4. Naini A, Shanske S (2007) Detection of mutations in mtDNA. Methods Cell Biol 80:437–463. doi:10.1016/S0091-679X(06)80022-1

    Article  PubMed  CAS  Google Scholar 

  5. Naue J, Sanger T, Schmidt U, Klein R, Lutz-Bonengel S (2011) Factors affecting the detection and quantification of mitochondrial point heteroplasmy using Sanger sequencing and SNaPshot minisequencing. Int J Legal Med 125(3):427–436. doi:10.1007/s00414-011-0549-6

    Article  PubMed  Google Scholar 

  6. Vandewoestyne M, Heindryckx B, Lepez T, Van Coster R, Gerris J, De Sutter P, Deforce D (2011) Polar body mutation load analysis in a patient with A3243G tRNALeu(UUR) point mutation. Mitochondrion 11(4):626–629. doi:10.1016/j.mito.2011.03.123

    Article  PubMed  CAS  Google Scholar 

  7. Metzker ML (2010) Sequencing technologies-the next generation. Nat Rev Genet 11(1):31–46. doi:10.1038/nrg2626

    Article  PubMed  CAS  Google Scholar 

  8. Li M, Schonberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87(2):237–249. doi:10.1016/j.ajhg.2010.07.014

    Article  PubMed  CAS  Google Scholar 

  9. Tang S, Huang T (2010) Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system. Biotechniques 48(4):287–296. doi:10.2144/000113389

    Article  PubMed  CAS  Google Scholar 

  10. Zaragoza MV, Fass J, Diegoli M, Lin D, Arbustini E (2010) Mitochondrial DNA variant discovery and evaluation in human Cardiomyopathies through next-generation sequencing. PLoS One 5(8):e12295. doi:10.1371/journal.pone.0012295

    Article  PubMed  Google Scholar 

  11. Walker UA, Collins S, Byrne E (1996) Respiratory chain encephalomyopathies: a diagnostic classification. Eur Neurol 36(5):260–267

    Article  PubMed  CAS  Google Scholar 

  12. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. doi:10.1038/nature03959

    PubMed  CAS  Google Scholar 

  13. Ramos A, Santos C, Alvarez L, Nogues R, Aluja MP (2009) Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification. Electrophoresis 30(9):1587–1593. doi:10.1002/elps.200800601

    Article  PubMed  CAS  Google Scholar 

  14. Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet–next generation sequence assembly visualization. Bioinformatics 26(3):401–402. doi:10.1093/bioinformatics/btp666

    Article  PubMed  CAS  Google Scholar 

  15. Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, Yi C, Kreuziger J, Baldi P, Wallace DC (2007) An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 35(Database issue):D823–D828. doi:10.1093/nar/gkl927

    Article  PubMed  CAS  Google Scholar 

  16. van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30(2):E386–E394. doi:10.1002/humu.20921

    Article  PubMed  Google Scholar 

  17. Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34(6):1021–1029. doi:10.1007/s11064-008-9865-8

    Article  PubMed  CAS  Google Scholar 

  18. Kato M, Nakamura M, Ichiba M, Tomiyasu A, Shimo H, Higuchi I, Ueno S, Sano A (2011) Mitochondrial DNA deletion mutations in patients with neuropsychiatric symptoms. Neurosci Res 69(4):331–336. doi:10.1016/j.neures.2010.12.013

    Article  PubMed  CAS  Google Scholar 

  19. Remes AM, Karppa M, Moilanen JS, Rusanen H, Hassinen IE, Majamaa K, Uimonen S, Sorri M, Salmela PI, Karvonen SL (2003) Epidemiology of the mitochondrial DNA 8344A > G mutation for the myoclonus epilepsy and ragged red fibres (MERRF) syndrome. J Neurol Neurosurg Psychiatry 74(8):1158–1159

    Article  PubMed  CAS  Google Scholar 

  20. Molnar MJ, Perenyi J, Siska E, Nemeth G, Nagy Z (2009) The typical MERRF (A8344G) mutation of the mitochondrial DNA associated with depressive mood disorders. J Neurol 256(2):264–265. doi:10.1007/s00415-009-0841-2

    Article  PubMed  Google Scholar 

  21. Hirano M, Ricci E, Koenigsberger MR, Defendini R, Pavlakis SG, DeVivo DC, DiMauro S, Rowland LP (1992) Melas: an original case and clinical criteria for diagnosis. Neuromuscul Disord 2(2):125–135

    Article  PubMed  CAS  Google Scholar 

  22. Gronlund MA, Honarvar AK, Andersson S, Moslemi AR, Oldfors A, Holme E, Tulinius M, Darin N (2010) Ophthalmological findings in children and young adults with genetically verified mitochondrial disease. Br J Ophthalmol 94(1):121–127. doi:10.1136/bjo.2008.154187

    Article  PubMed  CAS  Google Scholar 

  23. Hsieh RH, Li JY, Pang CY, Wei YH (2001) A novel mutation in the mitochondrial 16S rRNA gene in a patient with MELAS syndrome, diabetes mellitus, hyperthyroidism and cardiomyopathy. J Biomed Sci 8(4):328–335

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Argentine National Research Council (CONICET). MAK, MV and SK are members of the research career of CONICET.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Andrés Kauffman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauffman, M.A., González-Morón, D., Consalvo, D. et al. Diagnosis of mitochondrial disorders applying massive pyrosequencing. Mol Biol Rep 39, 6655–6660 (2012). https://doi.org/10.1007/s11033-012-1471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1471-9

Keywords

Navigation