, Volume 38, Issue 3, pp 1567-1574
Date: 12 Sep 2010

Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd2+, Zn2+, Cu2+, and NaCl in transgenic yeast

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd2+, Zn2+, Cu2+, and NaCl stress. Transgenic yeast also accumulated more Cd2+, Zn2+, and NaCl, but not Cu2+. Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd2+) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd2+, Zn2+, Cu2+, and NaCl stress in ThMT3-transgenic yeast. H2O2 levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd2+, Zn2+, Cu2+, and NaCl stress in the transgenic yeast. Cd2+, Zn2+, and Cu2+ increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.