Skip to main content
Log in

Fine-mapping of the apple scab resistance locus Rvi12 (Vb) derived from ‘Hansen’s baccata #2’

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Apple scab is a disease caused by the fungus Venturia inaequalis, which leads to significant economic losses in apple production especially in temperate regions. Breeding programmes are attempting to introgress scab resistance genes from wild apple into commercial cultivars to control the disease. Most of the commercially available scab-resistant varieties to date rely on the Rvi6 (Vf) resistance gene from Malus floribunda 821. The evolution of new pathotypes of V. inaequalis, which have caused the breakdown of Rvi6-based resistance, at least in northern Europe, highlights the need for the characterisation and pyramiding of scab resistance genes from different sources for durable disease resistance. In this study, the scab resistance gene Rvi12 from Malus baccata ‘Hansen’s baccata #2’ was confirmed as mapping to apple linkage group 12 in the cross ‘Gala’ × ‘Hansen’s baccata #2’ in an interval between SSR markers Hi02d05 and CH02h11b. Using the ‘Golden Delicious’ genome sequence, novel SSR markers and SNPs were identified in the Rvi12 mapping interval and mapped in an extended mapping population of 1,285 plants. Rvi12 was fine-mapped to an interval spanning 958 kb of the ‘Golden Delicious’ genome sequence. The 18 SNPs fine-mapped to the Rvi12 interval were screened in eight apple breeding founders, and for 16 of the 18 SNPs, the alleles linked in coupling with the Rvi12 resistance locus were found only in ‘Hansen’s baccata #2’. The SNPs identified will thus be useful for the efficient identification of apple genotypes carrying the Rvi12 resistance locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bus VGM, Bassett HCM, Bowatte D, Chagné D, Ranatunga CA, Ulluwishewa D, Wiedow C, Gardiner SE (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated mildew immune selection. Tree Genet Genomes 6:477–487

    Article  Google Scholar 

  • Bus V, Rikkerink E, Caffier V, Durel C, Plummers K (2011) Revision of nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–413

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Ronald P (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57

    Article  CAS  Google Scholar 

  • Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of the different classes of symptoms coded by the Vf gene in Apple for resistance to scab (Venturia inaequalis). Plant Pathol 40:249–256

    Article  Google Scholar 

  • Crandall C (1926) Apple breeding at the University of Illinois. Illinois Agric Exp Stn Bull 275:341–600

  • Dayton D, Williams E (1968) Independent genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hortic Sci 92:89–93

    Google Scholar 

  • Dayton D, Mowry J, Hough L, Bailey C, Williams E, Janick J, Emerson F (1970) ‘Prima’, an early fall apple with resistance to scab. Fruit Var Hortic Dig 24:20–22

    Google Scholar 

  • Dunemann F, Egerer J (2010) A major resistance gene from Russian apple ‘Antonovka’ conferring field immunity against apple scab is closely linked to the Vf locus. Tree Genet Genomes 6:627–633

    Article  Google Scholar 

  • Erdin N, Tartarini S, Broggini G, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49:1238–1245

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez F, Evans K, Clarke J, Govan C, James C, Maric S, Tobutt K (2008) Development of an STS map of an interspecific progeny of Malus. Tree Genet Genomes 4:469–479

    Article  Google Scholar 

  • Gessler C, Pertot I (2012) Vf scab resistance of Malus. Trees Struct Funct 26:95–108

    Article  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709

    Article  CAS  PubMed  Google Scholar 

  • Hemmat M, Brown S, Aldwinckle H, Mehlenbacher S, Weeden N, Janick J (2003) Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen’s baccata #2’. Acta Hortic 622:153–161

    CAS  Google Scholar 

  • Hough L, Shay J, Dayton D (1953) Apple scab resistance from Malus floribunda Sieb. Proc Am Soc Hortic Sci 62:341–347

    Google Scholar 

  • Joshi S, Schaart J, Groenwold R, Jacobsen E, Schouten H, Krens F (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung S, Ficklin SP, Lee T, Cheng CH, Blenda A, Zheng P, Yu J, Bombarely A, Cho I, Ru S, Evans K, Peace C, Abbott AG, Mueller LA, Olmstead MA, Main D (2013) The genome database for rosaceae (GDR): year 10 update. Nucleic Acids Res 42:1237–1244

    Article  Google Scholar 

  • Kellerhals M, Furrer B (1994) Approaches for breeding apples with durable disease resistance. Euphytica 77:31–35

    Article  Google Scholar 

  • Koller W, Wilcox W (2001) Evidence for the predisposition of fungicide-resistant isolates of Venturia inaequalis to a preferential selection for resistance to other fungicides. Phytopathology 91:776–781

    Article  CAS  PubMed  Google Scholar 

  • Koller W, Parker D, Turechek W, Avila-Adame C, Cronshaw K (2004) A two-phase resistance response of Venturia inaequalis populations to the QoI fungicides kresoxim-methyl and trifloxystrobin. Plant Dis 88:537–544

    Article  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder C, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • MacHardy W (1996) Apple Scab Biology, Epidemiology, and Management. APS Press, St. Paul

    Google Scholar 

  • Palumbi S, Baker C (1994) Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol 11:426–435

    CAS  PubMed  Google Scholar 

  • Parisi L, Lespinasse Y (1996) Pathogenicity of Venturia inaequalis strains of race 6 on apple clones (Malus sp). Plant Dis 80:1179–1183

    Article  Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Kruger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83:533–537

    Article  Google Scholar 

  • Parisi L, Fouillet V, Schouten HJ, Groenwold R, Laurens F, Didelot F, Evans K, Fischer C, Gennari F, Kemp H, Lateur M, Patocchi A, Thissen J, Tsipouridis C (2004) Variability of the pathogenicity of Venturia inaequalis in Europe. Acta Hortic 663:107–113

    Google Scholar 

  • Patocchi A, Walser M, Tartarini S, Broggini G, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–636

    Article  CAS  PubMed  Google Scholar 

  • Patocchi A, Frei A, Frey J, Kellerhals M (2009) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breed 24:337–347

    Article  CAS  Google Scholar 

  • Silfverberg-Dilworth E (2004) Identification of HcrV2 as an apple scab resistance gene and characterisation of HcrVf control sequences. Dissertation, ETH

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, Rozen S (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:115–127

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded in part by grants from the Autonomous Province of Trento, the Agroalimentare research AGER project—Apple fruit quality in the post-genomic era, from breeding new genotypes to post-harvest: nutrition and health (Grant No. 2010-2119) and the EU seventh Framework Programme by the FruitBreedomics Project Number 255582: Integrated approach for increasing breeding efficiency in fruit tree crops. The views expressed are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Sargent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmarasu, S., Sargent, D.J., Jaensch, M. et al. Fine-mapping of the apple scab resistance locus Rvi12 (Vb) derived from ‘Hansen’s baccata #2’. Mol Breeding 34, 2119–2129 (2014). https://doi.org/10.1007/s11032-014-0167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0167-3

Keywords

Navigation