Skip to main content
Log in

Physiological studies and proteomic analysis for differentially expressed proteins and their possible role in the root of N-efficient rice (Oryza sativa L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The root proteome of nitrogen-efficient and nitrogen-inefficient rice cultivars was compared in this study in order to investigate the differential expression of proteins under deficient (1 mM), low (10 mM) and high (25 mM) levels of nitrogen (N). Nitrogen use efficiency (NUE) was assessed by biochemical assays such as N-uptake kinetics and activities of N-assimilation enzymes. Two-dimensional gel electrophoresis and MALDI–TOF–MS analysis resulted in the identification of 504 protein spots (210 and 294 spots in cvs. Rai Sudha and Munga Phool, respectively). A positive correlation was observed between physiological parameters and the concentration of a number of root proteins. Sixty-three spots showed a significant cultivar × N-treatment effect on the level of expression. Functional aspects of eleven spots with major alterations in expression over control were critically analyzed. The data suggest that glutamine synthetase, cysteine proteinase inhibitor-I, porphobilinogen deaminase (fragment) and ferritin were involved in conferring N efficiency to the N-efficient rice cultivars/genotypes. Interestingly, these proteins are involved directly or indirectly in N assimilation. Such studies should help us in identifying and understanding the structural or functional protein(s) involved in the response to the level of nitrogen fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CHCA:

Cyanohydroxycinnamic acid

DDW:

Double-distilled water

DW:

Dry weight

ETC:

Electron-transport chain

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

γ-GHA:

γ-Glutamyl hydroxamate

Gln:

Glutamine

Glu:

Glutamate

GOGAT:

Glutamate synthase

GS:

Glutamine synthetase

HNE:

High nitrogen efficient

LNE:

Low nitrogen efficient

MNE:

Moderate nitrogen efficient

NE:

Nitrogen efficiency

NiR:

Nitrite reductase

NR:

Nitrate reductase

NUE:

Nitrogen use efficiency

PBG:

Porphobilinogen

PMF:

Peptide mass fingerprinting

ROS:

Reactive oxygen species

References

  • Abrol YP, Chatterjee SR, Kumar PA, Jain V (1999) Improvement in nitrogenous fertilizer utilization—physiological and molecular approaches. Curr Sci 76:1357–1364

    Google Scholar 

  • Agarwal GK, Rakhwal R, Yonekura M, Kubo A, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959

    Article  Google Scholar 

  • Ahmad A, Abdin MZ (1999) NADH: nitrate reductase and NAD (P) H: nitrate reductase activity in mustard seedlings. Plant Sci 143:1–8

    Article  CAS  Google Scholar 

  • Ahmad A, Khan I, Anjum NA, Diva I, Abrol YP, Iqbal M (2005) Effect of timing of sulphur fertilizer application on growth and yield of rapeseed (Brassica campestris L.). J Plant Nutr 28:1049–1059

    Article  CAS  Google Scholar 

  • Ahmad A, Khan I, Abrol YP, Iqbal M (2008) Genotypic variation of nitrogen use efficiency in Indian mustard. Environ Pollut 154:462–466

    Article  PubMed  CAS  Google Scholar 

  • Anjana UmarS, Iqbal M (2007) Nitrate accumulation in plants, factors affecting the process, and human health implications: a review. Agron Sustain Dev 27:45–57

    Article  CAS  Google Scholar 

  • Aslam M, Travis RL, Huffaker RC (1992) Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings. Plant Physiol 99:1124–1133

    Article  PubMed  CAS  Google Scholar 

  • Bahrman N, Gouy A, Devienne-Barret F, Hirel B, Vedele F, Le Gouis J (2005) Differential change in root protein patterns of two wheat varieties under high and low nitrogen nutrition levels. Plant Sci 168:81–87

    Article  CAS  Google Scholar 

  • Bloom AJ (1985) Wild and cultivated barleys show similar affinities for mineral nitrogen. Oecologia 65:555–557

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Zhou Y, Xiao J, Li X, Zhang Q, Lian X (2009) Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep 28:527–537

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Fan XR, Sun S, Xu G, Hu J, Shen Q (2008) Effect of nitrate on activities and transcript levels of nitrate reductase and glutamine synthetase in rice. Pedosphere 18:664–673

    Article  CAS  Google Scholar 

  • Carezo M, Garcia-Agustin P, Serna MD, Primo-Millo E (1997) Kinetics of nitrate uptake by citrus seedlings and inhibitory effects of salinity. Plant Sci 126:105–112

    Article  Google Scholar 

  • Chandna R, Gupta S, Ahmad A, Iqbal M, Prasad M (2010) Variabilities in Indian bread wheat (Triticum aestivum L.) varieties differing in nitrogen efficiency as assessed by microsatellite markers. Protoplasma 242:55–67

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36:77–115

    Article  CAS  Google Scholar 

  • Coque M, Gallais A (2006) Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theor App Genet 112:1205–1220

    Article  CAS  Google Scholar 

  • Conn SJ, Hocking B, Dayod M, Xu B, Athman A, Henderson S, Aukett L, Conn V, Shearer MK, Fuentes S, Tyerman SD, Gilliham M (2013) Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants. Plant Methods 9:4

  • Costa P, Bahrman N, Frigerio JM, Kermer A, Plomion C (1998) Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster Ait.). Plant Mol Biol 38:587–596

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    PubMed  CAS  Google Scholar 

  • Du Hyun K, Junko S, Dea-Wook K, Myung Kyu O, Myung Ki K, Sung SI, Hitoshi I, Yoshinori M, Randeep R (2009) Gel-based proteomics approach for detecting low nitrogen-responsive proteins in cultivated rice species. Physiol Mol Biol Plants 15:31–41

    Article  Google Scholar 

  • Evans HJ, Nason A (1953) Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol 28:233–254

    Article  PubMed  CAS  Google Scholar 

  • Fageria NK, Baligar VC (2005) Enhancing nitrogen use efficiency in crop plants. Adv Agron 88:97–185

    Article  CAS  Google Scholar 

  • Flæte NES, Hollung K, Ruud L, Sogn T, Færgestad EM, Skarpeid HJ, Magnus EM, Uhlen AK (2005) Combined nitrogen and sulphur fertilisation and its effect on wheat quality and protein composition measured by SE-FPLC and proteomics. J Cer Sci 41:357–369

    Article  Google Scholar 

  • Gallais A, Coque M, Quilleré I, Prioul JL, Hirel B (2006) Modelling post-silking N-fluxes in maize using 15N-labelling field experiments. New Phytol 172:696–707

    Article  PubMed  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  PubMed  CAS  Google Scholar 

  • Goyal SS, Huffaker RC (1986) The uptake of NO3– and NH4 + by intact wheat (Triticum aestivum) seedlings. Plant Physiol 82:1051–1056

    Article  PubMed  CAS  Google Scholar 

  • Grove H, Hollung K, Moldestad A, Færgestad EM, Uhlen AK (2009) Proteome changes in wheat subjected to different nitrogen and sulfur fertilizations. Agric Food Chem 57:4250–4258

    Article  CAS  Google Scholar 

  • Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA (2001) The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol 138:83–89

    Article  CAS  Google Scholar 

  • Hakeem KR, Ahmad A, Iqbal M, Gucel S, Ozturk M (2011) Nitrogen-efficient cultivars can reduce nitrate pollution. Environ Sci Pollut Res 18:1184–1193

    Article  CAS  Google Scholar 

  • Hakeem KR, Khan F, Chandna R, Siddiqui TO, Iqbal M (2012a) Genotypic variability among soybean genotypes under NaCl stress and proteome analysis of salt tolerant genotype. App Biochem Biotech 168:2309–2329

    Google Scholar 

  • Hakeem KR, Chandna R, Ahmad A, Iqbal M (2012b) Physiological and molecular analysis of applied nitrogen in rice (Oryza sativa L.) genotypes. Rice Sci 19(3):213–222

    Google Scholar 

  • Hirel B, Lea PJ (2001) Ammonia assimilation. In: Lea PJ, Morat-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, pp 79–99

    Chapter  Google Scholar 

  • Hirel B, Tercé-Laforgue MartinT, Gonzalez-Moro MB, Estavillo JM (2005) Physiology of maize. I. A comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol Plant 124:167–177

    Article  CAS  Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    Article  PubMed  CAS  Google Scholar 

  • Hunt J, Seymour DJ (1985) Method for measuring nitrate-nitrogen in vegetables using anion-exchange high performance liquid chromatography. Analyst 110:131–133

    Article  PubMed  CAS  Google Scholar 

  • Khan F, Hakeem KR, Sidiqqui TO (2013) RAPD markers associated with salt tolerance in Soybean genotypes under salt stress. App Biochem Biotech 170(2):257–272

    Google Scholar 

  • Kichey T, Heumez E, Pocholle P, Pageau K, Vanacker H, Dubois F, Le Gouis J, Hirel B (2006) Combined agronomic and physiological aspects of nitrogen management in wheat (Triticum aestivum L.). Dynamic and integrated views highlighting the central role for the enzyme glutamine synthetase. New Phytol 169:265–278

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Yang J, Moon S, Ryu CH, An K, Kim KM, Yim J, An G (2009) An rice OGR1 encodes a pentatricopeptide repeat—DYW protein and is essential for RNA editing in mitochondria. Plant J 59:738–749

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Ireland RJ (1999) Nitrogen metabolism in higher plants. In: Singh BK (ed) Plant amino acids. Marcel Dekker Inc., New York, pp 1–47

    Google Scholar 

  • Masclaux C, Quillere I, Gallis A, Hirel B (2001) The challenge of remobilization in plant nitrogen economy. A survey of physio-agronomic and molecular approaches. Ann Appl Biol 138:69–81

    Article  CAS  Google Scholar 

  • McNally SF, Hirel B, Gadal P, Mann AF, Stewart GR (1983) Glutamine synthethase of higher plants: evidences for a specific isoform content related to their possible physiological role and their compartmentation within the leaf. Plant Physiol 72:22–25

    Article  PubMed  CAS  Google Scholar 

  • Natarajan S, Xu C, Caperna TJ, Garrett WM (2005) Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins. Anal Biochem 342:214–220

    Article  PubMed  CAS  Google Scholar 

  • Newsholme SJ, Maleeft BF, Steiner S, Anderson NL, Schwartz LW (2000) Two-dimensional electrophoresis of liver proteins: characterization of a drug-induced hepatomegaly in rats. Electrophoresis 2:2122–2128

    Article  Google Scholar 

  • Neyra A, Hageman RH (1976) Relationships between carbon dioxide, malate and nitrate accumulation and reduction in corn (Zea mays L.) seedlings. Plant Physiol 58:726–730

    Article  PubMed  CAS  Google Scholar 

  • Pace GM, McClure PR (1986) Comparison of nitrate uptake parameters across maize inbred lines. J Plant Nutr 9:1095–1111

    Article  Google Scholar 

  • Pathak RR, Ahmad A, Lochab S, Raghuram N (2008) Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Curr Sci 94:1394–1403

    CAS  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8(12):2676–2686

    Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Qian P, Schoenau JJ (2007) Using an anion exchange membrane to predict soil available N and S supplies and the impact of N and S fertilization on canola and wheat growth. Pedosphere 17:77–83

    Article  CAS  Google Scholar 

  • Qureshi MI, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164:1239–1260

    Article  PubMed  CAS  Google Scholar 

  • Qureshi MI, D’Amici GM, Fagioni M, Rinalducci S, Zolla L (2010) Iron stabilizes thylakoid protein-pigment complexes in Indian mustard grown under Cd-stress as revealed by BN-SDS-PAGE and ESI-MS/MS. J Plant Physiol 167:761–770

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Sims AP, Stewart GR (1975) The control of glutamine synthetase levels in Lemna minor. Planta 125:201–211

    Article  CAS  Google Scholar 

  • Smil V (1999) Nitrogen in crop production: an account of global flows. Global Biogeochem Cycles 13:647–662

    Article  CAS  Google Scholar 

  • Smith IK (1980) Regulation of sulfate assimilation in tobacco cells: effect of nitrogen and sulphur nutrition on sulfate permease and O-acetylserine sulfhydrylase. Plant Physiol 66:877–883

    Article  PubMed  CAS  Google Scholar 

  • Song X, Ni Z, Yao Y, Xie C, Li Z, Wu H, Zhang Y, Sun Q (2007) Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics 7:3538–3557

    Article  PubMed  CAS  Google Scholar 

  • Spitsberg VL, Coscia CJ (2005) Quinone reductases of higher plants. Eur J Biochem 127:67–70

    Article  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Bian Y, Cheng K, Zou H, Sai-Ming Sun S, He J (2012) A comprehensive differential proteomic study of nitrate deprivation in arabidopsis reveals complex regulatory networks of plant Nitrogen Responses. J Proteome Res 11(4):2301–2315

    Google Scholar 

  • Wang SB, Chen F, Sommerfeld M, Hu Q (2004) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220:17–29

    Article  PubMed  CAS  Google Scholar 

  • Woodend JJ, Glass AMD, Person C (1986) Intraspecific variation for nitrate uptake and nitrogen utilization in wheat (T. aestivum L.) grown under nitrogen stress. J Plant Nutr 9:1213–1225

    Article  Google Scholar 

Download references

Acknowledgments

K.R.H. is grateful to the University Grants Commission, Government of India, for granting him a Junior Research Fellowship. M.I.Q. is grateful to DST and UGC, Govt. of India. Part of the study was done when M.I. was Visiting Professor at the Plant Production Department of King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Rehman Hakeem.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakeem, K.R., Mir, B.A., Qureshi, M.I. et al. Physiological studies and proteomic analysis for differentially expressed proteins and their possible role in the root of N-efficient rice (Oryza sativa L.). Mol Breeding 32, 785–798 (2013). https://doi.org/10.1007/s11032-013-9906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9906-0

Keywords

Navigation